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Appendices

A Comparison with VLAB implementation

We detail the comparison of our DArLiQQ model with the VLAB implementation. They fit
a parametric model with multiplicative components, the same dynamic model as ours; they
also use a “quadratic spline” to capture trends, that is, they include a quadratic function
of time. They focus on the iid error case with a chi-squared shock distribution. We treat
the trend as a nonparametric function of rescaled time and use local weighting estimators
to estimate the trend, as in Hafner and Linton (2010) in which case our trend estimators
nest the Amihud low frequency estimators as a special case, whereas the VLAB quadratic
spline estimator does not have such a connection. Second, we consider the case where the

shock is not iid and use a GMM estimation procedure like Cipollini et al. (2013) except
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we use only the first moment of the detrended series; this estimation method is robust to
higher moment existence and to time variation in higher moments of illiquidity. We also
consider the iid shock case but we find two issues. Flirst, the presence of zeros even in
the S&P500 series and some individual stocks. We allow for the shock to have a discrete
component that can be estimated by the zero frequency separately from the estimation of
the continuous part. The second issue is that the shock distribution appears to have heavy
tails as quantified by the log rank estimator (tail thickness in the range of four to eight) and
so the chi-squared distribution and the Weibull distributions (that are usually used in MEM
applications) would appear not to be good choices for the continuous part. Therefore, we
consider the Burr distribution that nests the Weibull but allows for Pareto like tails. We
also consider a nonparametric shock density for the continuous part, which is consistent
with heavy tails. We also develop the statistical theory necessary to implement inference
in our more general class of models and present semiparametric efficiency bounds for the
dynamic parameters in the presence of the two nonparametric nuisance functions the trend
and shock density function. In that regard, our work extends Drost and Werker (2004) who
consider efficiency bounds in the autoregressive conditional duration (ACD) model of Engle
and Russell (1998), but without trends. We also develop additional methodology to detect
permanent and temporary shifts in illiquidity. We work with kernel smoothing methods
throughout. An alternative estimation approach is based on the sieve method, Chen (2007).
The advantage of the sieve method is that it only requires a single optimization, albeit one

with many parameters to choose.

B Amihud illiquidity

We show in Figure 1 the daily stock log illiquidity series for the five largest US information

technology companies (the “Fab 5”7) — Amazon, Apple, Facebook, Google, and Microsoft —



over the period from May 2012 to October 2021. Note that there is a spike in the illiquidity
series for Google around end-March 2014 which is caused by a stock split on March 27,
2014.1 As this event caused irregularity in the trading activities for a few days, we replace
the volume data on those dates using the average volume level of the day before and the
day after that period. The daily log illiquidity series using the adjusted data are shown
in Figure 1b. The illiquidity time series appear broadly stationary during this period,
although a slight downward trend can be observed.

To emphasize how prevalent trends in illquidity are across financial markets and to
gain more insights into the conditional dynamics of the data, we fit an AR(5) model with
a quadratic polynomial trend function to the scaled illiquidity series y; = £, x 10, i.e.
v = a+ B(t)T) + v(t/T)* + 2?:1 Gjy—j + €, where coefficients  and 7 respectively
capture the linear and quadratic components of the polynomial trend. The estimated
coefficients with their corresponding t-statistics are provided in Table 1. The results show
that the coefficient estimates for the trend function are significant. One exception is the
quadratic term for Microsoft, meaning that this stock exhibits a linear trend over the
sample period. Consistent with visual inspection of Figure 1, all estimated polynomial
trend functions are overall downward trending. In addition, most of the autoregressive
coefficients are statistically significant, indicating some degree of persistence in the stock

illiquidity dynamics.

!The two-for-one stock split was associated with the introduction of a new non-voting share class (Class

C shares). See press release.


https://abc.xyz/investor/news/releases/2014/0306/
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Figure 1: Fab 5 daily log illiquidity — log ¢;.



Table 1: Estimated parameters of an AR(5) with trend.

Facebook Amazon  Apple  Google Microsoft
0.055 0.004 0.025 0.002 0.028
AR(1)
(2.683) (0.175)  (1.222)  (0.095) (1.339)
0.196 0.003 0.019 0.102 0.029
AR(2)
(9.720) (0.136)  (0.929) (4.961) (1.398)
0.146 0.088 0.106 0.168 0.025
AR(3)
(7.182) (4.295)  (5.218) (8.306) (1.235)
0.170 0.097 0.027 0.113 0.075
AR(4)
(8.426) (4.730)  (1.316) (5.506) (3.647)
0.122 0.061 0.097 0.063 0.053
AR(5)
(5.971) (2.953)  (4.723)  (3.053) (2.592)
0.059 0.131 0.010 0.029 0.072
Con
(8.946) (16.206)  (9.969) (8.235)  (15.583)
-0.169 -0.297 0.027 0.049 -0.062
t/T
(-7.263)  (-13.433) (6.405) (3.539)  (-5.076)
0.131 0.178 -0.031 -0.060 -0.001
(t/T)*
(6.346) (10.402) (-7.482) (-4.411) (-0.118)
Adj. R? 0.475 0.499 0.086 0.104 0.245

Note: Models are fitted on y; = £, x 10'°. The numbers in parentheses are

the t-statistics of the corresponding parameter estimates.
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Figure 2: Daily log illiquidity — log ¢;.



C Lemmas

Lemma 1. Suppose that Assumptions A1-A8 hold. Then, we have for any u
g(u) — g(u) = Vr(u) + Br(u) + Rr(u),

where Br(u) is deterministic and

T
TZ w(t/T — u)vy,

where:

log T
sup ’VT<U)‘ =0Op < (;%h ) : sup ’BT(u)’ = O(h?)

u€(0,1] u€lh,1—h]
sup ’RT ! op(h?).
u€lh,1—h]
sup | Br(u)| = O(h), sup |Ry(u)| = op(h).
w€[0,RJU[L—h, 1] w€[0,RJU[L—h, 1]

Proof of Lemma 1. We write

g(u) = g(u) ZKh t/T —u)g(t/T)v + = ZKh t/T —u)g(t/T) —g(u). (1)

t=1

Write

S Kalt/T — gt/ T, = glu) S Kalt/T — o+ 7 S Kalt/T — u) (9(t/T) — g(w) v

Furthermore,
d log T
sup |Vri(u)| < sup g(u) X sup n(t/T —uw)v| = O ,
u€l0,1] } Tl( )‘ u€l0,1] u€0,1] g / i Th

by standard arguments applied to 3., Kj(t/T — u)v, since v, is assumed to be stationary

and mixing, Francisco-Fernandez et al. (2003). We have by Taylor expansion

Vro(u) = hy'(u ZLlh (t/T — u)v, + h*g"( ZL% t/T — w)v,

QTZL% HT —u) (" (¢ (t/T, ) — g (w)) v,



where L;(v) = K(v)v!, j = 1,2 and ¢*(¢/T,u) is an intermediate point. By the same

type of arguments 3, Lin(t/T —u)v, /T = Op (, / IC}LhT) . The last term is op(h?) by the

continuity of ¢”(.) and the fact that

T
usel[l[)l,)l] % tzz; |Lon(t/T — u)ve| = Op(1).

The bias approximation is valid over [h,1 — h] by standard Taylor series argument. Fur-

thermore, since g(h) —g(0h) = (1—0)hg' (6h)+ O(h?) the approximation over [0, ] is valid,

likewise for [1 — h, 1].

Futhermore,

Pr <121<11Tg(t/T) < 0/2) — 0.
This follows because A = {min ;<7 §(t/T) < ¢/2} C B = {HlaXlgth 9(t/T) — g(t/T)| > 0/2} :
where Pr(B) — 0 by the uniform expansion in Lemma 1.

Define the infeasible estimators based on the iid sequence (; whose density is f supported

on R,

FO=23 Ky (G-, &(0) =~ (cj}ég n 1) |

We have the standard result under our conditions.

Lemma 2. We have

~ ~ B log T

s [7(0) = B = 0 {4777
= 7 _ log T

s [0 - BT = 0r | [T

Furthermore, for some sequences cyp — 0 and cop — 00

~ logT
swp  [52(0) = 2(Q)] = Op [ ([ BL 41
cir<(¢<car ’ ’ ’ | Th?c !

The sequence cor is needed because f(¢) — 0 as ( — oo, the sequence ¢ is needed
because of boundary issues for the bias terms. The proofs of these results are standard and

ommitted. We also have the following result for the feasible density estimator.
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Lemma 3. For some sequences cir — 0 and cor — 00, we have

~

log T

sup €) — ) =0p + h3 + h?
ar<(<car Thf !

r log T 2 2

sup |f'(¢) — ‘—Op ——+hi+h
cr<(<cor Th’?} d
log T

su B -5 =0 + h% + h?

r 2, O =01 = Or g 15

Proof of Lemma 3. We have

=1 =
1 d 7 Zt - C " (t ( = 2
2Th§;; k ( hy ) k ( h ) (Ct_gt) ’
7 Py . 1 17 Ct C d " Ct — C
(€)= (<) T_}L?;K < I ) (Ct Ct) + 2Th?c ;K <h—f) <Ct Ct)

1 " Zt_c " Ct_c " 2
2Th3; K ( hy >_K ( hy ) (Q_@’

where ¢, is an intermediate point. We next substitute in the expansion (5) for Et — G
and work term by term. The remainder term uses the Lipschitz continuity of K" and the

uniform convergence rate of ¢; — ;.

D Proof of main results

Proof of Theorem 1. From the expansion in Equation (1), we have Vr(u) = g(u) Zt L K (t)T—

w)v/T, and we may show that
VThVp(u) = N(0, ||K||*g(u)*Irvar(v,)),

by the arguments of Francisco-Ferndndez and Vilar-Fernandez (2001) based on the CLT

for mixing random variables.



Proof of Theorem 2. First, note that

Kalt/T =) = 900 = 7 3~ Kelt/T = w(t/T)G - g(u)

t=1

T
=g(u)z ) KG(t/T —u) (G —1)
t=1

HM’%

—_

+%Z¥%UT—U(WD‘%)
. % S K (/T =) (9(t/T) — g(w)) (G — 1)

t=1

= Vi (u) + By (u) + Ry (u),

where V! (u) is a mean zero stochastic term, whereas B (u) = Br(u) is the deterministic
bias term, while R (u) = op(h?). The term V;t(u) has a MDS error term and satisfies the
CLT

VIV () = N (0.[|K][Pg(w)*0?)

We next show that this is the leading term.
We have

~

A(0,9) — M = )\t(e 90) — At + Ae(60,9) — Ao + Remy

where the remainder term Rem, r is of smaller order. We focus on the two “linear” terms.

We have

M@.g0) v = P G ) (Ga) P) (G g)

~ T 82)\15(@, g()) 62>‘t(§7 gO) 0
+ <9 - 90) ( 90001 o 00007 (9 B 90) ’

where H@ — HOH < H@\— 6’0H . We have, ignoring initial conditions

10



~ _ t j—1 bej — by
(00, 9) =M =05 (g((t —-N/T) gt —j)/T))

& b gt/ — gl )T
=02 B = o((t —3)/T)

o by (3= )/T) — gl — /T
P >( ot —)/T) )

+ Remy r,

where the remainder term Remy ¢ is of smaller order.

We have
1 <& (1< ¢
Ry ==Y KG(t/T —u)= — =Y Ki(t/T —u)
T =1 At =1 Av

T
L |2 b (y 7~
< p— 7 — _— J—
15T M0, 9) T; R(/T —u)y <)\t(979) >\t>
T
1 l ~
< Op(1) x fZKE(t/T_“))\_i <)\t(9,g)—>\t) ,

because (0, g) > € for all § € © and g € G, and indeed

A (0,9) = (6o, g0) —

At(é\, 9) — >\t(00790)‘ > Ae(0o, g0) — op(1),

by the triangle inequality and the uniform convergence of g given in Lemma 1.

We have

T
1 Z : GO0, 90) (5 _ ~1/2
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We next consider the nonparametric part:

1= 7 30T - Z ROy s R s
-7 Z Rt/ =3, Zﬁ lg«t g—t_f)m o
UL >%§%19<<t S e D
’ %iKﬁ(t/ . “>i—zﬁ T D

- STl + STQ + ST3.

Clearly, Spo = Op(h?) = op(h?), Sz, = op(h?) = op(h?) by the undermsoothing, so we

consider Spq, which is

BN b t j—1 Crj U 1 & ‘
S = ;Kz(t/T—u)A—t ;Bo Y g((tg_(]))/Tﬁ ;Kh(s/T—(t—])/T)Us~
Consider
Iy b o
;Kh YTy \g((t—1)/T) (t—l ZK*L s/T —(t—1)/T)v,

—_

ZKh t/T — ) MN—1Cr1 = ZKh s/T — (t —1)/T)v,
= 90 (A aGr) 75 D0 K/ T =) S Kals/T = (= 1)/ T,

t
T

S RG(HT — ) (GArGr = B (CAaGemn) 7 3 Fils/T = (= 1)/ T

t=1

1
+ g(u) T
We have

% S KG(/T - u)% D Ku(s/T = (t = 1)/T)w,

t=1

~ % 3 (Z K (8T — w)Ka(s)T — t/T)) Ve,

12



which is mean zero and has variance

1 T T
ﬁ Z Z Krskrs B (USUS/) ?

s=1 s'=1

where wp, = 31 K (t/T — u)Ky(s)T — t/T). We have
R £ () ()
“re ok () K ()

s=1 t=1

2

e s (M () () (5

h

1 t=1 ¢'=1

We have

{(t’,t,s) e{1,....T}: ‘——u‘ <h,

= O((Th)*) + O((Th)?)

Therefore

1 1

T2 <O(<Th)2) + O((Tﬁ)z)) =0 <T21h2 " Tjﬁ2> '

It follows that
STl OP ( ﬁ_l) = OP(T_I/zh_1/2)

Ry = op(T~Y207Y2) + op(h?).

Proof of Theorem 3. We apply Theorem 1 and 2 of Chen et al. (2003). We note that

Lemma 1 establishes that

sup [g(u) — g(u)| = op(T~11).
u€lh,1—h]

13
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We note that this is all that is required since one can drop from the calculation of My
the observations ¢t = 1,...,Th and t = T — Th,...,T, that is, by taking Iy = {t :
Th+1,...,T —Th}.

We next establish that
VT (Mz (80, 90) + T2(00, 90) © (§ — g0)) = N (0,).
In the sequel we proceed to infinity to simplify the presentation. We consider

Zﬂt 0,9), p(0,9) = (% - At(e,g))

pi(00, 90) = ze1 M (G — 1)

€t 1 -1 gtfj

We next calculate

%M(Q, 90 +7(9 — 90))- (3)

We have for any 7

A0, 90+ 7(9 — 90)) — M(0,90) ZB] v by gt =9)/T) = go(t = 5)/T)
- 9o((

T sy t—34)/T) 90((t = 5)/T) ’
and so
. Ai(0,90 +7(9 —g90)) = Me(0,90)] i-19(( = 3)/T) — go((t —4)/T)
Bt . } Zﬁ ~ )T

_ (t/T)—go(t/T) gl

wWt/T) 15
Furthermore, for
ft _ ‘et
o@D _wwD b gt/T) = go(t/T)
T 90(t/T) 90(t/T)
Uy o 4y
B | wotrlomg)  9ot/T) | _g(t/T) — 9o(t/T)
T Jo (t/T)

14



Therefore,

Mr(0,9) = Mr(0, go) + I'2(60, go) © (9 — go)

1Z (6o, g0) + L1=8-9, §(t/T)—go(t/T))‘

t=1 -5 90(t/T)
We have
73w A = 3 e 3 Ko/ T =T G = 1)+ Ol

T

(AsCs — 1)% >z Ky (s/T —t/T)

s=1 t=1

T
~ 23 G~ DB ).
It follows that
Mz (0., 79) Z wy + op(T7?),
where w; is mean zero and is a stationary and mixing process. The CLT follows.

Proof of Theorem 4. Let ¢;* = {;/\; then

G =9t/T)G

The local likelihood is apart from a constant

u) =Y Ku(t/T —u) <—1ogg +log f (%)) .

We have in general

- T 1 1 1 <£;*> f** 1 T
9 :TZKh(t/T—u) o ZKht/T—u)g ( )

g
PL(g:u 1 <z;*) | <g) o
—’ Kyt)T —u) | —s2 (= | —=sh [+ )+ ).

dg> Z n(t/ ) 7?2\ yg ?*\g) g

At the true parameter Values

OL(go(u)iw) _ 1




We have by integration by parts

B(%(@)6) = [ %
[~ [s© 50
[ #0500
— L)
This guarantees that F(9?L(go(u);u)/0¢*) = —I(f)/g(u)?. The argument for the case

with estimated L is similar to Fan and Chen (1999).

Proof of Theorem 5. We show that

=10 =—Z3(no, 90) S (105 go) + OP(T_l/Q)a (4)

T

T
Z1(no, 9o) = T th (nagO)gnt(Tth)Tv St(n0, go) = T Zém(%,go),
t=1

t=1

where (7, (10, go) is an MDS, and the result follows by LLN and CLT for stationary mixing
processes. The approximation (4) follows by Tayor series expansions using the smoothness
and moment conditions. By construction of the efficient score function, the contribution
from g is not present.

Specifically, we show that for any sequence np = 19 + T~ ?w for w € R?
S;(UT7/g\> - S?‘(U% 90) == 0P<T71/2>

I;(ﬁu §) - I;(Tlo,go) = 0P<1)

and then apply standard arguments from Kreiss (1987) and Linton (1993).

16



In this argument we use second order expansions, in particular,

l 4

“oas Gt/T)N  9t/T)N (5)
(= M=\ (G = g/T) 3(t/T) - g(t/T)\*
- ( 9 ) e ( y ) « (M )« ()
Xt - M\ §(t/T) - g(t/T)
i ( n ) () +ema

where Remy r is a remainder term that is of smaller order. We then further replace Xt — N
by the leading terms of (2). The quadratic terms are all bounded using the uniform rate of
convergence of g(u) — g(u) and the root-n consistency of 0. We likewise expand © around

its limit and obtain terms of the form

52(C) — 2(¢)

Olog f5 olog f,
(Tt - a0

0 (0l N 1.0% (01 N
i (PRE) @@ -0+ 505 (TR ) 0@ v

32 (M) (- o - S (V) 0 - o

2799\ aC 2° 0

for some @ such that [ — | < | — | = Op(T~1/2). It follows that when |§ — | < CT~1/2

52(¢) — 52(¢)

sup

—CQ (Glogfw 1. 0° (8logf¢
I<I<Qr

2 (ZE) 06 -0 - 305 (P2 ) © (- 7

1
= 5QT x CT™L.

The leading terms fit into sample averages and can be analyzed by laws of large numbers.

Regarding the remainder term, we have by the Bonferroni and Markov inequalities

E((GR(&))")

o W

Pr (maX GR(G) > QT) < TPr(GR(G) >Qr) <T

1<t<T

provided Qp = T'*/logT. Therefore, with k = 4, Q772 — 0 and the remainder term

is op(T~1/?).

17



Proof of Theorem 6. We show that

0 — 0 = —Z;* (0o, fo. 90) "S5 (6o, fo, go) + op(T /%)

T
* o 1 ok
I* (907f0790 Ze 907f> (007f7 g>T7 ST (007f0790) = TZ ot (607f7 g)
t=1

The arguments are lengthy and repeated in many places in the literature. Furthermore,
they often use additional devices like sample splitting and discretization. We first discuss
the trimming issue. Since the density f has unbounded support on the right side, it
is necessary to trim out the contributions where f is small; this argument is presented
in Linton and Xiao (2007) using “smooth trimming”. Specifically, let 7(-) be a density

function that has support [0, 1], 7(0) = 7(1) = 0, and let

(z) = %T (% - 1) |

where b is the trimming parameter; then 7,(xz) has support on [b,2b]. Letting Ty(x) =

Jy m(2)dz, we have

Ty(z) = [ m(z)dz, b<a<2b

For example, consider the following Beta density 7(z) = B(a+1)"'2%(1—2)*, 0<2<1,
for some positive integer a, where B(a) is the beta function defined by B(a) = I'(a)?/T'(2a),
and I'(a) is the Euler gamma function. Then, it can be verified that the function Y,(x) is
(a+ 1)—times continuously differentiable on [0, 1]. This property allows us to use standard
Taylor series arguments, whereas indicator function trimming would preclude this. We will

assume that a > 3. with some function T,. Then let 1, = Tb(f(a)), and define
Iy (0, f.9) = Zé (0, F,9)65:(0,F.9) L, S;7(0,1,39) = Ze (0,f,9)1
for any 0 € O©.
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E Semiparametric efficiency

E.1 Known f

Suppose that
by = 96(?5/T)/\t(9)<t
Ai=1—=0—7+BN-1+ 7 1G1

where (; is i.i.d. with mean one and density f supported on R, so that E(\;) = 1 and
E(¢;) = 1. We suppose that g is unknown but we consider the parameterization by §. We

first suppose that f is known. Consider the log likelihood
T T T
L(B,0]6r, ..., 0r) = =Y log \(6,0) = > log gs(t/T) + > log f (G:(6, )
t=1 t=1 t=1

A(0,0) =1 =B —~+ BX\-1(0,0) +7Wa (6)

ly
A(0,6)gs(t/T)

Note that A\; depends implicitly on §. We have (at the true values)

Ct(9> 5) =

3@(9, 5) . _Et 0 10g At _ 0 10g /\t
90 N(0,0)gs(t/T) 06 ' a0
9G(6,0) —l dlog A,  Jlogygs(t/T)
o5 MN(0,0)gs(t)T) 00 00

C (9log)\t+8logg5(t/T)
"\ 096 Bl '

The score functions are

0 ol ol 00
t=1 =
Furthermore,
o (6,0) OX—1(0,0)
= _ —1
98 B 9 + X\—1(0,96)
o (0,6
AL B
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and so
dlog\(0,6) (1 —BL) ' BNy —1) +~v(1—BL) uypy

op At
Likewise,
oN(0,6)  0N_1(0,6)
8’}/ - /B a’_)/ + Ut—1
oA (0,0
(-6 P
and so

Olog Mi(0,0) _ (1= BL) " upy

57 >\t

Here, L is the lag operator. We next consider the score wrt o,

N(0,8) 58/\t,1(9,6) - by Ogs((t—1)/T))05
a7 Tt =1)/T) " gs((t — 1)/T)
Therefore,
oA (6,0 0l —
(1 _51/) 6(5 ) = —’Y>\t—1Ct—1 Oggg((at(s 1)/T>
mgi, O) _ g, o8 95(((;6— DIT) _ s e, los gtg((até— 2)/T)
- 527)\t736t73810g gé(g;_ 3)/T) —

Then we expand

Dlog \(0,8) _ dloggs(t/T) (1 - BL) A1y
a6 LAY A '

The latter argument follows essentially because for a summable sequence {¢;} and smooth

function g we have

T t—j
o (5)

J=1

(7)%

j=

T T T vl -
(%) ij _g/ (%) %ij]_ %ijjag// <5 (;7]))
j=1 j=1
Vj.

g
g

12
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Therefore,

oL _ Z 1 (Q)ag‘t Odlog A, 0Ologgs(t/T)

95 08 6

_ ZSQ(Ct) ((’3log)\t N 810gg5(t/T)) (8)

) )

Il
(]~
»
%)
—~

¢y 2108/ D (1 - BL)A: AHgH)
1-B-7 1 dlog g5 (t/T)
7y T, 0

t=1

since

1 (1 - BL)A At—1Ge—1 . At —7 (1 - 5[1)71 At-1Ge—1
— -
)\t >\t

1=BL)N=1-B—=7+A1G1=1—F+yu
A =1+7(1~ ﬁL)_l Up—1-

In conclusion, the tangent space for g consists of functions of the form

{Zsz G)—h(t/T) : h € Ly|0, 1]} . (10)

That is, the score w.r.t. g is of the form

> sa()yh(E/T)

for some function h(.) and the information is of the form

Z ( ) W(t/T)? ~ I(f)E (%) / () 2du
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The efficient score function Lj for 6 in the presence of unknown g is the residual from

the projection of Ly onto the tangent space T, this is

a Jdlog \; E [813%&)\%} 1
L, = E ¢ — — 11
’ =1 () 90 E (%) At (1)

Note the term involving h(t/T) drops out as this is arbitrary. This can be verified, as for

any element of T, (indexed by h(.)) we have

L L (on Fl% L
tz:; S2<Ct)>\t 90 = (%) X SQ(Ct))\_t (t/T)
a 1 [on E [a—éﬂ

E.2 Parametric f

Now suppose that f = f,, where ¢ is unknown. The full parametric likelihood is now

T T T
L0, 0,016, ., br) = =Y log \(6,8) = > log gs(t/T) + > _log f,, (Gi(6,9))
t=1 t=1 t=1

where f, is a density function that imposes through its parameterization the unit mean

assumption. We have
T

oL Zdlog f, ()
i Dl T

t=1

These score functions satisfy the two moment conditions:
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0108 1, Q)+ 0y ge— [ (O .
/Ca—;ﬂoch—/C Pelag— 2 [er0ac=F1-o

Furthermore,

(280) - o () ()

B (P ) - [ 20 @ i

- [0 ac

_ fo ) 91 (C)
- /(Hcﬁp(o) s S

RIS
- - [t

We have

We have

5 [on =5 [craa—o
and by the Chain rule

9 (e A
/<a¢<f¢ ) - [¢5 ( )f@ d<+/< Telag
so that
RIAGP 1
/< s Uel&) g E(c <f¢(<>))
Therefore,

o (515) - 2 (P L) 2 (5 rorm 21

for any parameterization of g. We conjecture that the efficient score function for ¢ in the

presence of unknown ¢ is




This can be verified since

By (P ) 2 (5 ) nem) - Sk (E (P ) 2 (%)) h(t/7)

I
o

for any h.

E.3 Unknown f

We next consider the semiparametric case where f is of unknown form but has unit mean.

According to Drost and Werker (2004), the tangent space for f consists of functions 7 that

satisfy
T .
Ty=q > () / FHOFQ)dC =0, j=0,1,
t=1

Recall that the tangent space for g consists of functions of the form
T

T, = ZISQ(Qt))\lth(t/T) the Ly0,1] 3,

and these two spaces are not orthogonal. We must project

T
Olog A
Li=Y" () a%t
t=1

orthogonally to their union. Formally, one may write
Ly = Ly = ACE (Ly | Ty + Ty ).

where ACE(.|.) is the alternating conditional expectation operator, see Bickel et al. (1993)

(Proposition 1).
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According to Drost and Werker (2004) (Example 3, iid errors) the projection of Ly

orthogonal to the tangent space Ty is

ct - 1 alog M) w ) log A dlog \,
Z Z s2(Ct) - .
=1 1 00

This score function is not orthogonal to T, so it is not a candidate here.

In the sequel we make use of the fact that

E ((Ct —1) 32(@)) =E (Ct52(Ct)) =1

[esorc = - [eroic- [ c?%ﬂo ¢
— 1 / Q)
142 [ (O

by integration by parts.

We claim that the projection of Ly onto Ty + T, is of the form

T
Ct * *
;( = ST a+zsgg _Tf+Tg,

for some a, b since the first component 77 is in Ty and the second component 77 is in T,,.

It follows that the efficient score function is of the form

ZT: <alogAt —a—b%t) (13)

This is orthogonal to both T, and T if and only if:

alog)\t 1 -
PP )

1 1 1 dlog A\ 1
E(?gax““”(x 0 rr%))
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The first condition arises because we need the second term in Lj* to be orthogonal to Ty
(the first term is automatically so), while the second condition arises because we need Lj*

to be orthogonal to T,. We rewrite the second condition as

1 [Olog\; B
L))

where & = 1 —1/L,(f)o?. Using (14) we must have

B dlog A 1
‘E< 96 )_bE(At)

We then substitute into (16) to obtain
1 Olog A\ 0log N\ 1 1 5 (1
fo) —kE El=)=b|E(=) —wE? (=
(At R ) : ( o0 ) (A) ( (A) SRl PY

o E(R) —ne (252 £(3)

or

In conclusion, for these a,b the efficient score in (13) satisfies the orthogonality condition.
Note that under only the MDS assumption, Drost and Werker (2004) (Example 3) the

projection of Ly orthogonal to the tangent space T is

ETJ G—1  Olog\
t=1 gt’]:t 1) o0
This score function is not orthogonal to T,. The projection orthogonal to T, is

i G—1 (Zﬂog)\t_bi)
var Ct‘«/t‘tl 8‘9 )\t 7

t=1

where b is the slope of the best linear no intercept predictor,
dlog s 1
,_E (—%ge r)
e
A
This is the efficient score function in the model where only the conditional moment restric-

tion is made.
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F Nonparametric bootstrap procedure for risk pre-
mium regressions

In this section, we summarize the nonparametric bootstrap procedure to obtain standard
errors for the risk premium regression under our illiquidity modelling framework. Suppose

that
b = g(t/T))\tQt

Et = Rt —m(t/T) = oz—l—”y)\t—l—(sg}—i—et.

1. Let g(.), 0 be the estimates of the illiquidity model, obtained using the GMM approach

or the semiparametric ML estimation procedure. Let A, = /\t(g), G =40 /q(t/ T)Xt.

2. Use the estimated coefficients &, 7, § to obtain the OLS residuals from the regression of

R,—m(t/T) on 1, i, ¢; and denote & as the OLS residuals from the return regression.

3. Let w; = (Z}/ Zthl a/T, e;) and resample jointly with replacement u; = (¢, e;),
t=1,...,T. Then use (; to generate new series of A and ¢; = g(t/T)\;(; and then

reestimate g*(.) and 6* and hence Xz‘, Et*

4. Then with e;, we generate new series of ﬁ:
R, =G +A\ +0( + €.

5. Re-estimate the return regression by OLS to obtain a*, B*ﬁ* The standard errors

for a, B , 7 can be obtained from the distribution of a*, B*, ~* across resamples.

G Other tables and figures

G.1 Estimation of long-run trend function
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Figure 3: Fab 5 and Bitcoin illiquidity series and trend functions (x10').
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Figure 4: Fab 5 and Bitcoin log illiquidity series and trend functions.
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G.2 Estimation based on conditional moment restrictions
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Figure 9: Fab 5 and Bitcoin log illiquidity and updated trend function based on the
semiparametric ML estimator of )\; parameters where the error term (; follows a Weibull
distribution. The red curve corresponds to the initial estimate of the trend function and

the yellow curve corresponds to the updated trend estimates.
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G.4 Estimation: i.i.d. error term with nonparametric density
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G.5

Risk premium
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Figure 11: S&P 500 index daily (log) illiquidity series and return data.
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H The occurrence of exact zeros

We consider the daily return data of the S&P 500 stock market index for the period ranging
from January 03, 1950 until October 07, 2021. The data contains 125 zero returns in total,
which corresponds to 0.69% of the entire sample. To further investigate this issue, we
construct a dummy variable which takes a value of one on days where the observed return
is zero and plot the resulting series in Figure 12, where we have smoothed the series using
a local linear estimator.? We denote the smoothed series as 7(t/T), which is a function of
rescaled time representing the unconditional probability of observing a zero at time t. We
observe that the zeros series exhibits a strong downward trend over time and the majority
of the zeros occurred before 2000. This higher incidence of zero returns in the earlier
part of the sample might be linked to low index level (below 100) and restrictions on two
decimals for reporting. We further plot in Figure 13 the illiquidity trend function g(t/7)

and the corresponding series adjusted for the presence of zero return observations, which

9(t/T)

/T It can be observed that there is a small difference between the

we compute as
original estimated trend series and the adjusted one at the beginning of the sample period
but the two curves become indistinguishable after 1960.

We also compute the ACF of the dummy variable series and plot it in Figure 14 for
lags up to 30. The majority of the autocorrelations are positive, with a significant peak
at lag 23, and only two of them are negative (lags 17 and 28). In addition, the magnitude
of almost all autocorrelations is quite small which might be explained by the relatively

infrequent incidence of zero return observations.

2We opt for a Gaussian kernel and we choose the bandwidth according to the direct plug-in method as

introduced in Ruppert et al. (1995).
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Figure 12: Smoothed series for the occurrence of exact zero returns in the S&P 500 index.
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Figure 13: Illiquidity trend function g(¢/7") and its corresponding series adjusted for the

presence of zero return observations for the S&P 500 index.
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S&P 500 index.
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I Tail index and fat-tailed distribution

I.1 Tail index estimation

We consider the improved tail index estimator b proposed by Gabaix and Ibragimov (2011),
which is estimated from the regression log(Rank — 1/2) = a — blog(Size) using the 5% of
largest observations in the distribution. We report in Table 2 the tail index estimates for
the illiquidity ¢;, rescaled illiquidity ¢}, error term (; and its reciprocal é, obtained using
GMM approach. The estimated tail index of rescaled illiquidity ¢; is above three for all
assets. For illiquidity ¢;, the estimates are larger than two in most cases. The exceptions,
i.e. Amazon, Apple and Microsoft, do not indicate that the first moment does not exist
but rather they are due to the presence of a strong downward trend at the beginning of
the sample period. This is confirmed by the estimates using only post-2000 data reported
in Table 3. In this case, the estimated tail index for ¢; is between 1.9 and 4. In addition,
we observe that the estimated tail index of the error term (; is between three and four for
Apple and Bitcoin while it is between four and five for the S&P 500 index. For Facebook,
Amazon, Google and Microsoft, the estimated tail index is between six and eight. This
suggests that the shocks have a thicker tail than the Weibull distribution. We therefore
also consider fat-tailed distributions in our analysis, such as the Lomax, Burr and Inverse

Burr distribution.
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Table 2: Estimated tail index.

S&P500 Facebook Amazon Apple Google Microsoft Bitcoin
0 | 2.989 (0.14) 2.716 (0.35) 1.016 (0.08) 1.331 (0.08) 3.016 (0.29) 0.912 (0.06) 2.760 (0.35)
0 | 4.378 (0.21) 6.278 (0.82) 3.396 (0.27) 3.480 (0.22) 4.305 (0.42) 5.632 (0.38) 4.198 (0.52)
¢ | 4.784 (0.23) 7.196 (0.94) 6.428 (0.52) 3.746 (0.23) 5.502 (0.53) 5.997 (0.40) 3.370 (0.42)
111.255 (0.06) 1.516 (0.20) 1.336 (0.11) 1.285 (0.08) 1.004 (0.11) 1.734 (0.12) 0.987 (0.12)

Note: The numbers in the parenthesis are the estimated asymptotic standard errors (2/71)1/25 where b is the estimated tail
index from the regression log(Rank — 1/2) = a — blog(Size). The regression is based on the 5% of the largest observations

in the distribution.

Table 3: Estimated tail index using data after 2000.

S&P500 Facebook Amazon Apple Google Microsoft Bitcoin

0 | 3.423 (0.29) 2.716 (0.35) 1.911 (0.16) 3.282 (0.28) 3.016 (0.29) 3.986 (0.34) 2.760 (0.35

0.96) 6.892

C/J
=]
Cﬂ

¢ | 4478 (0.38) 7.388 0.59) 6.538 (0.56) 5.65

(0.35) (

| 4.565 (0.39) 6.278 (0.82) 3.587 (0.31
(0.96) ( 6.910 (0.59) 3.367 (0.42
(0.20) (

) ) ( )
) 4.635 (0.40) 4.305 (0.42) 6.131 (0.52) 4.198 (0.52)
) (0.55) ( )
1.026 (0.09) 1.512 (0.20) 1.339 (0.11) 1.267 (0.11) 1.098 (0.11) ( )

0.11) 1.717 (0.15) 0.987 (0.12

=

Note: The numbers in the parenthesis are the estimated asymptotic standard errors (2/n)'/ 2} where b is the estimated tail
index from the regression log(Rank — 1/2) = a — blog(Size). The regression is based on the 5% of the largest observations

in the distribution.
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.2 Maximum likelihood estimation (Weibull, Lomax, Burr and
Inverse Burr distributions)

We define the Lomax density function for the random variable = > 0, with parameters
a>0and A >0 as

«

T —(a+1)
1+ =
R =5 i+
Its uncentered moments of order p are given by

, NT(a—pI'(1+p)
= I'(a)

, fora>p

so that if A is chosen as A = o — 1 then the random variable x has unit mean, i.e. pl =1

for a« > 1. The corresponding variance is equal to

We define the Burr density function for the random variable x > 0, with parameters v > 0,

foe) =2 (%)H 14 (%)1 _

i.e. x ~ Burr(y, A, ¢). Its uncentered moments of order p are given by

A>0,and ¢ >0 as

(14271)

B pF (1 —|—p7_1) r ()\_1 —py‘l)

[y =c AL (14 A0) , for y/A>p

so that if ¢ is chosen as
1

A (14 A7)
LA+ HT (At =971)

then the random variable x has unit mean, i.e. u? = 1 for v > A. The corresponding

variance is equal to




e \ — 0, the Burr density tends to the Weibull density W (v, c¢). We note that v is the

shape parameter which we denoted as ¢ in the main text.

e 7 = 1, the Burr distribution reduces to the Lomax distribution L( %, %)

We define the Inverse Burr density function for the random variable x > 0, with parameters

a>0,0>0 and 7 >0 as
at(z/0)™
 [1+ (z/0)7]""

i.e. x ~ InvBurr(a, d, 7). Its uncentered moments of order p are given by

fi(z) =

p_ 0'T(A—p/T)I'(a+p/T)
o = T(a)

, form>p

so that if 0 is chosen as
['(a)

b= I'(1—1/7)(e+1/7)

then the random variable z has unit mean, i.e. ul® = 1 for 7 > 1. The corresponding

variance is equal to
52 D)1 =2/7)M(a+2/7)
B (1 —1/7)(a+1/7)]?

Results summary
We first observe in Table 4 that the Lomax distribution provides an inferior fit compared
to the Weibull and Burr distributions. This is due to the fact that when restricting the
distribution to have unit mean, the corresponding variance is a/(a — 2) > 1. However, our
data suggests under dispersion with a standard deviation ranging from 0.7 to 0.9.
Secondly, when comparing the results for the Weibull and Burr distributions, we observe
that there is a difference in log likelihood of around 177 for Apple and 3 for Bitcoin. For
Facebook, Amazon, Google and Microsoft, there is almost no difference in terms of log
likelihood. Additionally, the estimated A® parameter for the Burr distribution is around

0.094 for Apple, 0.052 for Bitcoin and almost zero for the rest of the stocks which suggests

43



that the estimated Burr distribution reduces to a Weibull distribution (see Table 7). This
observation is further confirmed by Figure 15 where we can see that there is a visible
difference between the Weibull and Burr distributions for Apple and Bitcoin while for the
others the Burr and Weibull densities align with each other.

In addition, when comparing the results for the Inverse Burr and Burr distributions in
the symmetric case, we observe that the Inverse Burr distribution provides a better fit with
an increase in log likelihood ranging from 4 to 54, except in the case of Microsoft whose
log likelihood under the Burr distribution is around 26 units larger. From Figure 15, we
can observe that the estimated densities for the Inverse Burr distribution depart noticeably
from the results obtained with the other distributions. In particular, their behavior around
zero requires further investigation.

Lastly, we plot, in Figure 16 to Figure 19, the estimated nonparametric density (based
on the residuals Et from the GMM approach) against the estimated Weibull, Lomax, Burr
and Inverse Burr densities. We observe that there are noticeable differences between the
estimated parametric and nonparametric densities, suggesting that we should further in-
vestigate whether using a nonparametric density allows us to further improve the ML

estimation for the \; process.

44



Table 4: Log likelihood comparison between models using different parametric densities

(Weibull, Lomax, Burr, Inverse Burr) for the error term ;.

Facebook Amazon  Apple Google  Microsoft  Bitcoin

Weibull — -2147.28 -3659.45 -6839.33 -3862.38 -7790.52 -2336.99
Lomax  -2299.22 -4053.17 -7449.32 -4030.13 -8425.72 -2371.10
Burr -2147.32  -3659.39 -6662.32 -3862.39 -7790.55 -2333.91
Inv Burr -2117.04 -3622.51 -6658.67 -3808.37 -7816.51 -2326.64

Note: The numbers reported are in terms of log LL.

Table 5: Maximum likelihood estimates of the parameters for the A\; process under the

assumption that the error term (; follows a Weibull distribution.

Facebook Amazon Apple Google Microsoft Bitcoin
£ | 0.886 (0.012) | 0.915 (0.024) | 0.901 (0.001) | 0.928 (0.002) | 0.917 (0.001) | 0.897 (0.005)
v 1 0.059 (0.015) | 0.085 (0.024) | 0.095 (0.000) | 0.062 (0.001) | 0.068 (0.001) | 0.067 (0.005)
¢ | 1.365 (0.002) | 1.355 (0.043) | 1.307 (0.001) | 1.266 (0.000) | 1.379 (0.002) | 1.135 (0.023)
o¢ 0.741 0.746 0.772 0.795 0.734 0.883

Note: The estimated parameters are 6 = (3,7, ) for the \; process. ¢ is the shape parameter of the Weibull

distribution which has mean 1 and standard deviation o¢ of

r(1+%)

— 1. The numbers in parentheses are the

standard errors of the corresponding parameter estimates. We note that the standard errors are underestimated

as they do not account for the estimation error associated with the smoothed liquidity process in the first step of

the estimation.
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Table 6: Maximum likelihood estimates of the parameters for the A\; process under the

assumption that the error term (; follows a Lomax distribution.

Facebook Amazon Apple Google Microsoft Bitcoin
B 0.878 (0.026) 0.915 (0.007) 0.906 (0.007) 0.929 (0.011) 0.917 (0.001) 0.899 (0.018)
y 0.060 (0.013) 0.085 (0.007) 0.090 (0.007) 0.060 (0.010) 0.069 (0.001) 0.068 (0.011)
a | 307.686 (42.008) | 224.827 (0.780) | 140.772 (1.954) | 256.016 (20.211) | 991.652 (0.001) | 100.071 (0.805)
oc 1.003 1.004 1.007 1.004 1.001 1.010

Note: The estimated parameters are § = (5, v, «) for the A, process. « is the shape parameter of the Lomax
distribution which has mean 1 and standard deviation o, of \/g ,a > 2. The numbers in parentheses are the
standard errors of the corresponding parameter estimates. We note that the standard errors are underestimated
as they do not account for the estimation error associated with the smoothed liquidity process in the first step of

the estimation.

Table 7: Maximum likelihood estimates of the parameters for the \; process under the

assumption that the error term (; follows a Burr distribution.

Facebook Amazon Apple Google Microsoft Bitcoin
B | 0.889 (0.000) | 0.915 (0.000) | 0.909 (0.004) | 0.927 (0.000) | 0.915 (0.000) | 0.900 (0.005)
v 1 0.058 (0.000) | 0.085 (0.000) | 0.088 (0.004) | 0.062 (0.000) | 0.069 (0.000) | 0.069 (0.002)
~B | 1.361 (0.000) | 1.355 (0.000) | 1.462 (0.001) | 1.267 (0.000) | 1.381 (0.000) | 1.175 (0.005)
AB | 0.000 (0.000) | 0.000 (0.000) | 0.094 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.052 (0.004)
o¢ 0.743 0.746 0.748 0.795 0.733 0.895
Note: The estimated parameters are 0 = (83,7v,7%,\B) for the )\; process. (77 \B) are

the parameters of the Burr distribution which has mean 1 and standard deviation o, of
(e ()

2
() (o3|

of the corresponding parameter estimates. We note that the standard errors are underestimated

AT (1+ %)

— 1. The numbers in parentheses are the standard errors

as they do not account for the estimation error associated with the smoothed liquidity process in

the first step of the estimation.
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Table 8: Maximum likelihood estimates of the parameters for the A\; process under the

assumption that the error term (; follows an Inverse Burr distribution.

Facebook Amazon Apple Google Microsoft Bitcoin
3 | 0.8%6 (0.016) | 0.917 (0.006) | 0.908 (0.006) | 0.930 (0.005) | 0.919 (0.005) | 0.907 (0.007)
~ 1 0.060 (0.008) | 0.083 (0.006) | 0.088 (0.006) | 0.059 (0.004) | 0.068 (0.004) | 0.067 (0.006)
7 | 6.320 (0.028) | 5.178 (0.024) | 4.139 (0.022) | 4.871 (0.002) | 4.483 (0.023) | 3.511 (0.032)
a | 0.146 (0.003) | 0.185 (0.004) | 0.268 (0.005) | 0.185 (0.004) | 0.233 (0.003) | 0.259 (0.008)
o¢ 0.698 0.731 0.765 0.773 0.749 0.938
Note: The estimated parameters are 6 = (3,7, 7,«) for the A\; process. (7,a) are the pa-

rameters of the Inverse Burr distribution which has mean 1 and standard deviation o, of

02r'(1—2/7)I(a+2/1) . o
\/ o) — 1 with 6 =

I'(a)
r(1-1/m)(a+l/7)"

The numbers in parentheses are the standard
errors of the corresponding parameter estimates. We note that the standard errors are underes-
timated as they do not account for the estimation error associated with the smoothed liquidity

process in the first step of the estimation.
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Figure 15: Comparison between the estimated Weibull, Lomax, Burr and Inverse Burr

densities.
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Figure 16: Comparison between the kernel density estimate of ; (solid line) and the Weibull

density (dashed line).
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Figure 17: Comparison between the kernel density estimate of ¢; (solid line) and the Lomax

density (dashed line).
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Figure 18: Comparison between the kernel density estimate of ¢; (solid line) and the Burr

density (dashed line).
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FB: density of innovations AMZN: density of innovations
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Figure 19: Comparison between the kernel density estimate of ¢; (solid line) and the Inverse

Burr density (dashed line).
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J Mean smoothing and median smoothing
In our model, we assume that the illiquidity process follows a multiplicative process as
b= g(t/T)MG (17)

A =w+ BN + 964, (18)

where ¢(.) is a positive and smooth but unknown function of rescaled time, ¢; = ¢,/g(t/T)
is the rescaled illiquidity, and (; is a non-negative random variable with conditional mean
one and finite unconditional variance.

We first estimate the trend function g¢(.) using the following estimator

e Mean smoothing: first, we have

@, B) = arg rgiﬂnz Ky(t)T —u) {t; —a — B(t/T —u)}”,

Tot=1
e Median smoothing: compute the 3-day rolling window median (£2°¢) of the illiquidity

series, then we have

T

(@, 8) = argmin Z Kn(t/T —u) |74 — o = B(t/T — )|,

and let g*(u) = & for each u € [0,1]. In both cases, we normalize them such that they

integrate to one, i.e. let

9" (u)

T :
Jo 7 (w)du

The observed illiquidity series together with the estimated trend functions, using mean

g(u) =

smoothing and median smoothing methods, are plotted in Figure 20. The normalized trend
functions are plotted in Figure 21.

We then obtain the detrended illiquidity series and estimate the dynamic parameters
of the \; process using a one-step GMM approach. The parameter estimates and their

associated standard errors are reported in Table 9.
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Figure 21: Normalized illiquidity trend for Fab 5 and Bitcoin.
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Table 9: Estimated parameters of the \; process based on first moment restriction.

Mean smoothing Median smoothing
w B g w B Y
0.006 0.956 0.034 0.008 0.960 0.027
Facebook
(0.005) (0.018) (0.013) | (0.006) (0.021) (0.013)
0.009 0.943 0.053 0.013 0.940 0.053
Amazon
(0.007) (0.016) (0.013) | (0.007) (0.013) (0.010)
0.014 0.899 0.085 0.014 0.900 0.083
Apple
(0.004) (0.015) (0.011) | (0.004) (0.014) (0.010)
0.007 0.960 0.030 0.005 0.965 0.027
Google
(0.004) (0.014) (0.009) | (0.004) (0.014) (0.009)
0.007 0.932 0.057 0.005 0.936 0.054
Microsoft
(0.003) (0.012) (0.008) | (0.002) (0.010) (0.007)
0.018 0.895 0.067 0.031 0.882 0.058
Bitcoin
(0.008) (0.025) (0.013) | (0.019) (0.042) (0.012)
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