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1 Introduction

Liquidity is a fundamental property of a well-functioning market, and lack of liquidity is

generally at the heart of many financial crises and disasters. Common ways of measur-

ing liquidity using high-frequency data include bid-ask spreads, effective spreads, realized

spreads, depth, weighted depth, and transaction volume. There is a large literature that

uses such measures to compare market quality across markets, across time, and before and

after interventions of various sorts. For example, it has been a big part of the debate around

high-frequency trading, i.e., whether such trading activity has improved or degraded mar-

ket liquidity, see e.g. Hendershott et al. (2011), O’Hara and Ye (2011). There are many

complex issues in working with high-frequency trade and quote data. Instead, there are

several methods widely used to measure liquidity using lower frequency data, i.e. daily

transaction price data, see Goyenko et al. (2009) for a review. We focus on the Amihud

illiquidity measure as proposed in Amihud (2002) which has proven to be very popular in

the empirical literature. It is easy to implement and by all accounts relatively robust. It has

been shown to influence the cross-sectional asset returns through the so-called illiquidity

premium, see Amihud and Mendelson (2015).

We propose a dynamic semiparametric model for illiquidity measured by the daily

component of the Amihud measure. Specifically, we propose a multiplicative error model

(MEM) that contains a nonparametric long run trend and a parametric short-run autore-

gressive process as in Engle et al. (2012). The trend part is important for many datasets

where liquidity has improved in a secular fashion such as the S&P 500 over the last hundred

years and Bitcoin over the much more recent period of its operation. The nonparametric

trend is comparable with the conventional monthly averaged measure widely used in the

literature, except that our measure is available daily and the implicit length of averaging is

controlled by a bandwidth parameter to be chosen by practitioners. Further, the dynamic
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component measures the short-run variation in liquidity that may be of equal interest.

We approach estimation of the parametric part through GMM based on the first condi-

tional moment restriction, which is consistent under minimal conditions, as well as through

a semiparametric likelihood procedure that assumes i.i.d. shocks. In the latter approach,

we consider two cases, one where the shock distribution is parametric such as the Weibull

or Burr distributions and a further case in which the shock distribution is not specified and

is treated nonparametrically. The Burr distribution and the nonparametric distribution

allow for heavy tails that we might see during liquidity crises. We develop the distribution

theory for the three cases to enable valid inference.

We use the five largest US technology company stocks and the Bitcoin asset to demon-

strate the model performance in terms of fitting relevant features of the illiquidity data

and we provide various model diagnostics and specification tests. We show that the ef-

ficient semiparametric maximum likelihood estimator, assuming a parametric Weibull or

Burr distribution for the error term, captures most of the salient features of the illiquidity

process. This can be further improved by using a nonparametric density estimator.

We also investigate how the different components of the illiquidity process obtained

from our model relate to the stock market risk premium using data on the S&P 500 stock

market index. We find that the detrended market risk premium is positively affected by the

anticipated short-run illiquidity process and negatively associated with the unanticipated

component of market illiquidity. This observation is in agreement with the results of

Amihud (2002) which were based on an autoregressive (AR) model fit to monthly illiquidity.

The Multiplicative error model has been applied to many different positive-valued fi-

nancial time series including volatility, duration between trades, and transaction volume,

see e.g. Engle (2002). The MEM model and its applications and developments over the

last 20 years are reviewed in Cipollini and Gallo (2022). The VLAB applies this model and

provides regular updates on their website (https://vlab.stern.nyu.edu/liquidity) for
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a number of series according to their specific implementation. We give a more detailed

comparison of our model with theirs in Appendix A of Hafner et al. (2023).

The remainder of the paper is organized as follows. In Section 2, we discuss the time

series properties of the Amihud illiquidity measure and introduce our DArLiQ model. In

Section 3, we discuss estimation via GMM based on conditional moment restrictions and

through a semiparametric maximum likelihood procedure that assumes i.i.d. shocks. Large

sample properties of our procedures are provided in Section 4. We provide a Monte Carlo

study in Section 5 to analyze the finite sample performance of the GMM and semipara-

metric ML estimation procedures. Section 6 presents a detailed empirical application. The

appendices are delegated to a separate file which is available online as Hafner et al. (2023).

2 Amihud illiquidity and the model

The Amihud (2002) illiquidity measure of a stock at time t, At, is defined as

At =
1

nt

nt∑
j=1

ℓtj , ℓtj =
|Rtj |
Vtj

, (1)

where Rtj is the stock return and Vtj is the (dollar) trading volume at time tj, j = 1, ..., nt.

Typically, the measure is computed over monthly or lower frequencies by averaging the

daily illiquidity ratio ℓtj over nt observations within the period of interest, e.g. nt being the

number of trading days within a month. Intuitively, the Amihud measure captures the fact

that a stock is less liquid if a given trading volume generates a larger move in its price. The

Amihud illiquidity measure is a good proxy for high-frequency measures of price impact

(Goyenko et al. (2009); Hasbrouck (2009)) with the advantage of only requiring daily price

and volume data. Barardehi et al. (2021) proposed to replace the close-to-close return by

the overnight component of that return. Fong et al. (2018) proposed a more general class of

liquidity measures based on ratios of functions of volatility to functions of trading volume.
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Both modifications can easily be accommodated in our framework, but we focus on the

original Amihud measure as this is currently the most popular approach.

Empirical evidence points to the existence of factors driving low-frequency variations

in illiquidity dynamics in addition to higher-frequency variations. To illustrate, we plot in

Figure 1 the evolution of daily log Amihud illiquidity measure for S&P 500 over 1950–2021.

We observe that the illiquidity series exhibits a strong downward trend over time, at least

up to 2005. Trends in illiquidity series are not limited to S&P 500, as we show in Appendix

B using Fab5 and Bitcoin series. This evidence motivates our framework for the Amihud

illiquidity measure which weakens the requirement on stationarity. We develop a new class

of dynamic autoregressive liquidity (DArLiQ) models, which captures both the slow-varying

long-term trend and short-run autoregressive component relevant for illiquidity modelling.
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Figure 1: S&P 500 index daily log illiquidity – log ℓt.

Suppose that ℓt is a non-negative process that follows a multiplicative process as in Engle

and Gallo (2006) but possesses a nonparametric multiplicative component to account for

nonstationarity or trend as in Engle and Rangel (2008) and Hafner and Linton (2010). Let

ℓt = g(t/T )λtζt (2)

λt = ω + βλt−1 + γℓ∗t−1, (3)
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where g(.) is a positive and smooth but unknown function of rescaled time, ℓ∗t = ℓt/g(t/T )

is the rescaled liquidity, and ζt is a non-negative random variable with conditional mean

one and finite unconditional variance denoted as σ2
ζ . We present evidence later that the

assumption of finite unconditional variance for the shock process is reasonable. Extensions

to higher order models, including more lags of λt and ℓ∗t are straightforward and analogous

to the ARCH literature. Note that ω > 0, β ≥ 0, γ ≥ 0 are sufficient conditions for λt > 0

with probability one. Furthermore, provided β+γ < 1, the process ℓ∗t is stationary in mean

(and perforce strictly stationary) and follows an ARMA(1,1) process (with heteroskedastic

errors). If β + γ ≥ 1, then the process ℓ∗t is not weakly stationary although it is strongly

stationary for a range of such parameter values. More problematic is that in this case E(ℓt)

ceases to exist and our estimation strategy, which is based directly on moment restrictions

will fail. This can be addressed using the approach based on quantile restrictions developed

as in Koo and Linton (2015). In this paper, we will focus on our mean based approach as

evidence show that ℓt possesses several moments and so our main strategy is reasonable

for most datasets. We further show in Appendix J that the normalized trend functions

obtained using the mean and median smoothing methods are comparable and the choice of

the smoothing method has a minor impact on the parameter estimates for the λt process.

There is an identification issue because we can multiply and divide the two components

g, λ by the same constant. We suppose that E(λt) = 1, which is achieved by setting

ω = 1−β−γ. The series ℓ∗t = λtζt possesses the same stationarity properties as ℓt from the

model without a trend. We may suppose that the error process ζt is i.i.d. with some c.d.f

F . Francq and Zaköıan (2006) (Theorems 2 and 3) ensures that the process ℓ∗t is strictly

stationary and geometrically ergodic under our restrictions on β, γ. The i.i.d. assumption

can be helpful for estimation but it may also be important for the calculation of “Liquidity

at Risk”, which would require further assumptions about the conditional quantiles of ζt.

Note that the process ℓt actually depends on T and forms a triangular array, ℓt,T , but for
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notational economy, we suppress this dependency. The process may be initialized from its

stationary distribution or from some fixed values {ℓ0, λ0}.

3 Estimation

We suppose that a sample of non-negative ℓt, t = 1, . . . , T is observed. We will throughout

maintain that ℓt possesses uniformly bounded moments up to some order, which as acknowl-

edged requires some restriction on the dynamic parameters. Under these conditions, esti-

mation is guided by assumptions made about the error process ζt. The minimalist approach

is to assume only that with probability one E(ζt − 1|Ft−1) = 0, and E(ζ2t ) <= C < ∞. In

that case, one can estimate the function g(.) by conditional mean smoothing of ℓt and the

identified parameters β, γ by the GMM approach. Provided that additional high level weak

dependence conditions are satisfied, one can ensure a CLT for the resulting estimators. As

in Cipollini et al. (2013), one may wish to additionally specify a second conditional moment

restriction whereby E(ζ2t −(1+σ2
ζ )|Ft−1) = 0 with probability one. This additional moment

restriction permits more efficient estimation provided that this restriction is true, but if it

is not true, using this additional moment restriction will bias the parameter estimates.

We may further assume that ζt is i.i.d. which implies the conditional moment restriction

but also other restrictions. Consider the mixed continuous/discrete case where for all x ≥ 0,

Pr (ζt ≤ x) = π1(x = 0) + (1− π)1(x > 0)

∫ x

0

f(u)du, (4)

where f is an absolutely continuous density function with support (0,∞). In some cases, the

discrete component (zero returns) is important while in others it is not. For estimation, we

may either assume that f is of unknown form or assume that f is parametrically specified,

i.e., fφ for some unknown shape parameter φ such as Weibull or Burr. For forecasting

future values of ℓt, one does not need the shock distribution, but prediction intervals and

LAR (Liquidity at Risk) require the estimation of some features of the error distribution.
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3.1 Estimation based on conditional moment restriction

We first convert the conditional moment restriction E(ℓt|Ft−1) = g(t/T )λt to the uncondi-

tional moment restriction E(ℓt) = g(t/T ), t = 1, . . . , T. We use this condition to obtain an

initial consistent estimator of g by the kernel smoothing method, specifically we let

ĝ(u) =
1

T

T∑
t=1

Kh(t/T − u)ℓt, u ∈ (0, 1), (5)

whereK is a kernel function symmetric about zero supported on [−1, 1] satisfying
∫
K(u)du =

1, while h is a bandwidth. Because of the equally spaced observations in time, the denom-

inator of the Nadaraya-Watson estimator is unnecessary here for interior points. In this

context, the kernel estimator is Best Linear Minimax (under i.i.d. errors) at any fixed

u ∈ (0, 1) according to Fan (1993), i.e. it is equivalent to the local linear estimator. The

estimator does suffer from boundary bias and in particular ĝ(0), ĝ(1) will not be consistent

without modifications. A standard way to correct for boundary bias is to use boundary

kernels that adapt to the estimation point as they approach the boundary, see Gasser et al.

(1985). An alternative method is local linear kernel regression, which does not require an

explicit boundary correction, see Fan and Gijbels (1996). The issue with both methods is

that the estimate of g(u) is not guaranteed to be nonnegative everywhere, whereas the sim-

ple estimator is non-negative with probability one. In practice, at least for our application,

this does not seem to be an issue and we use also the local linear method. Nevertheless, for

our theoretical results we work with ĝ(u) as above for all u ∈ [h, 1−h] and in the boundary

region we either renormalize by
∑T

t=1Kh(t/T − u)/T (Nadaraya-Watson estimator) or we

set ĝ(u) = ĝ(h) if u ≤ h and set ĝ(u) = ĝ(1 − h) if u ≥ 1 − h. In this case, we guarantee

positivity of our estimate but suffer some performance loss at the boundary. Another ad-

vantage of the simple estimator is that one can interpret the widely computed measure At

defined in (1) as a special case of ĝ(u) with uniform kernel and bandwidth equivalent to a

month around point u. We define the detrended liquidity ℓ̂∗t = ℓt/ĝ(t/T ), t = 1, . . . , T.
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We next estimate the dynamic parameters θ = (β, γ)⊺ by exploiting the conditional

moment restriction E(ℓ∗t |Ft−1) = λt, where ℓ∗t = ℓt/g(t/T ), t = 1, . . . , T. In practice, we

define for any θ ∈ Θ, where Θ is a compact set defined below, λ̂t(θ) = 1−β−γ+βλt−1+γℓ̂∗t−1

for t = 1, . . . , T, where we take initializations ℓ̂∗0, λ0 = 1 for simplicity. Then we define

ρt(θ, ĝ) = zt−1(ℓ̂
∗
t − λ̂t(θ)), where zt−1 ∈ Ft−1 are instruments, and let

θ̂GMM = argmin
θ∈Θ

∥∥MT (θ, ĝ)
∥∥
W
, MT (θ, ĝ) =

1

T

∑
t∈IT

ρt(θ, ĝ),

where W is a weighting matrix and IT ⊂ {1, . . . , T}. In the sequel we suppress the notation

IT , although we discuss this issue in the Supplementary material. The estimator θ̂GMM

is consistent for θ under our conditions below (and we drop the subscript GMM below).

We suggest an improved estimator of g(.). We work from conditional moment restriction

E
(

ℓt
λt
|Ft−1

)
= g(t/T ), which is now feasible given our consistent estimates of θ and hence

λt. We take a simple implementation of local GMM, Gozalo and Linton (2000) and Lewbel

(2007), based only on constant instruments in which case we obtain the closed form

g̃(u) =
1

T

T∑
t=1

Kh̃(t/T − u)
ℓt

λ̂t

, u ∈ (0, 1), (6)

where λ̂t = λ̂t(θ̂, ĝ) are estimated in the previous procedure. The kernel K is as before but

the bandwidth sequence h̃ may be different reflecting the different bias variance trade-off.

3.2 Estimation based on i.i.d. assumption

We assume that the error ζt is i.i.d. with mean one, variance σ2
ζ , and c.d.f. F as specified

above. The semiparametric case where the density f is unknown has been treated in other

time series models by Kreiss (1987), Linton (1993), Drost and Klaassen (1997), and Ling

and McAleer (2003). For a given density f, define the Fisher scale score and information:

s2 (ζ) = −
(
1 + ζ

f ′ (ζ)

f (ζ)

)
, I2(f) =

∫
s2j(ζ)f(ζ)dζ. (7)
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3.2.1 Parametric density case

Suppose that ζt follows a parametric distribution with density f depending on some un-

known parameters φ, denoted as fφ. Among potential candidates, Weibull and Gamma

distributions have proven to be solid choices for duration modelling, e.g. in Engle and Rus-

sell (1998), as they are more flexible than the exponential distribution and allow for over-

or under-dispersion. In case of fat-tailed data, a popular choice in the duration literature

has been the Burr distribution, which nests the Weibull and allows for fat tails, see e.g.

Bauwens and Giot (2001). Analyzing the key features of the fitted shock in the GMM case

can provide some indications on which distribution to choose. We elaborate on this point

in the empirical study.

If g(.) were known, the log likelihood function of {ℓ1, . . . , ℓT} is, apart from a term to

do with g(.) which does not depend on parameters, equal to

L(θ, φ, π|ℓ1, . . . , ℓT ) =
∑
ℓt=0

log π +
∑
ℓt>0

log(1− π)−
∑
ℓt>0

log λt(θ) +
∑
ℓt>0

log fφ
(
ζt(θ)

)
,

where ζt(θ) = ℓt/λt(θ)g(t/T ). From this we can see the separability of π; the parameter π

may be estimated by simply counting the frequency of zeros of ℓt.
1 The remaining quantities

are estimated using non-zero observations only. To avoid complicating the notation, we

assume in the sequel that π= 0. In practice, given a consistent estimate of g(.), we may

maximize an estimated version of likelihood L̂(θ, φ), where g(.) is replaced by ĝ(.) or g̃(.).

In fact, we avoid further nonlinear optimization by using our initial consistent estimates of

θ and auxiliary initial consistent estimates of φ, φ̂, which may be obtained through closed-

form moment estimators. For example, in the Gamma case, parameterized to have mean

one, the parameter φ can be estimated as one over the sample variance of the residuals.

We show in Appendix E.2 that the efficient score functions (in the semiparametric

1We adopt this approach in Appendix H where we investigate the occurrence of zero returns in S&P

500 over 1950-2021. The data contains 125 zeros (0.69% of the sample) and majority occurred before 2000.
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model) for η = (θ⊺, φ)⊺ in the presence of unknown g(.) are:

L∗
θ(η) =

T∑
t=1

ℓ∗θt(η), ℓ∗θt(η) = s2(ζt)

∂ log λt

∂θ
−

E
[
∂ log λt

∂θ
1
λt

]
E
(

1
λ2
t

) 1

λt

 , (8)

L∗
φ(η) =

T∑
t=1

ℓ∗φt(η), ℓ∗φt(η) =
∂ log fφ (ζt)

∂φ
−

E
(

∂ log fφ(ζt)

∂φ
s2(ζt)

)
E
(

1
λt

)
I2(fφ)E

(
1
λ2
t

) s2(ζt)
1

λt

. (9)

To obtain fully efficient estimates of η, we use one-step updating from initial root-T

consistent estimates, Bickel (1982), Bickel et al. (1993), Linton (1993), Drost and Klaassen

(1997), and Ling and McAleer (2003). Denote η̃ = (θ̃⊺, φ̃)⊺, η̂ = (θ̂⊺, φ̂)⊺, and let ℓ∗ηt =

(ℓ∗⊺θt , ℓ
∗
φt)

⊺, then let

η̃ = η̂ + I∗
ηη(η̂, ĝ)

−1S∗
η(η̂, ĝ), (10)

I∗
ηη(η̂, ĝ) =

1

T

T∑
t=1

ℓ∗ηt(η̂, ĝ)ℓ
∗
ηt(η̂, ĝ)

⊺, S∗
η(η̂, ĝ) =

1

T

T∑
t=1

ℓ∗ηt(η̂, ĝ),

where ℓ∗θt(η̂, ĝ) and ℓ∗φt(η̂, ĝ) are given by ℓ∗θt(η̂, ĝ) = ŝ2(ζ̂t)

(
∂ log λ̂t

∂θ
−

1
T

∑T
t=1

∂ log λ̂t
∂θ

1

λ̂t
1
T

∑T
t=1

1

λ̂2t

1

λ̂t

)
and

ℓ∗φt(η̂, ĝ) =
∂ log fφ̂(ζ̂t)

∂φ
−

1
T

∑T
t=1

∂ log fφ̂(ζ̂t)
∂φ

ŝ2(ζ̂t)
1
T

∑T
t=1

1

λ̂t
1
T

∑T
t=1 ŝ

2
2(ζ̂t)

1
T

∑T
t=1

1

λ̂2t

ŝ2(ζ̂t)
1

λ̂t
with λ̂t = 1− β̂ − γ̂ + β̂λ̂t−1 +

γ̂ ℓt−1

ĝ((t−1)/T )
and ŝ2(ζ) = −

(
1 + ζ

f ′
φ̂(ζ)

fφ̂(ζ)

)
.

The i.i.d. structure also permits one to improve the estimation of g by using the local

likelihood method of Tibshirani and Hastie (1987). Suppose that f, θ were known, then

the local likelihood estimator of g(u) based on data ℓt is given by the maximizer of

T∑
t=1

Kh(t/T − u)
(
log f

(
ζt(g)

)
− log g

)
, ζt(g) =

ℓt
λtg

, t = 1, . . . , T, (11)

with respect to the parameter g ∈ R+. In general, this involves nonlinear optimization with

respect to the scalar parameters. Instead, we will pursue a one-step updating approach.

Following Fan and Chen (1999), we may update the estimator of g by

g̃LocL(u) = ĝ(u)− L̂−1
gg (ĝ(u);u)L̂g(ĝ(u);u), (12)

where we have L̂g(g;u) = ∂L̂(g;u)/∂g and L̂gg(g;u) = ∂2L̂(g;u)/∂g2 with L̂(g;u) =∑T
t=1Kh∗(t/T − u)

(
log fφ̂

(
ζ̃t(g)

)
− log g

)
and ζ̃t(g) =

ℓt
gλt(θ̂,ĝ)

, t = 1, . . . , T.
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3.2.2 Nonparametric density case

In Appendix E.3, we derive the efficient score function for θ in the semiparametric model

with unknown f, g, thereby extending Drost andWerker (2004). This is L∗∗
θ (θ) =

∑T
t=1 ℓ

∗∗
θt (θ)

with ℓ∗∗θt (θ) =

(
ζt−1
σ2
ζ

+ s2(ζt)

)
a+s2(ζt)

(
∂ log λt(θ)

∂θ
− b 1

λt

)
= ζt−1

σ2
ζ
a+s2(ζt)

(
∂ log λt(θ)

∂θ
− a− b 1

λt

)
for some a, b with a = E

(
∂ log λt

∂θ

)
− bE

(
1
λt

)
and b =

E
(

1
λt

∂ log λt
∂θ

)
−κE

(
∂ log λt

∂θ

)
E
(

1
λt

)
E

(
1

λ2t

)
−κE2

(
1
λt

) where

κ = 1− 1/I2(f)σ
2
ζ .

Suppose we have initial consistent estimators of θ, g(.). Then, one can estimate the

density function f(ζ) by f̂(ζ) = 1
T

∑T
t=1 Khf

(
ζ̂t − ζ

)
, where hf is another bandwidth

sequence. The residuals are defined as ζ̂t = ℓt/ĝ(t/T )λ̂t, t = 1, . . . , T. This estimator does

not impose restriction E(ζt) = 1. Instead, we also consider estimator based on the rescaled

residuals ζ̂t/
∑T

t=1 ζ̂t/T. Notationally, we assume the same kernel as in the estimation of

the liquidity trend but this need not be the case. In particular, since ζt ≥ 0 one may wish

to use special kernel methods adapted to this problem, Chen (2000) and Scaillet (2004).

We propose to construct efficient estimators of θ by two step estimation based on initial

consistent estimates of θ, f, g. Specifically, let:

˜̃
θ = θ̂ + I∗∗

θθ (θ̂, f̂ , ĝ)
−1S∗∗

θ (θ̂, f̂ , ĝ), (13)

I∗∗
θθ (θ̂, f̂ , ĝ) =

1

T

T∑
t=1

ℓ∗∗θt (θ̂, f̂ , ĝ)ℓ
∗∗
θt (θ̂, f̂ , ĝ)

⊺1̂t, S∗∗
θ (θ̂, f̂ , ĝ) =

1

T

T∑
t=1

ℓ∗∗θt (θ̂, f̂ , ĝ)1̂t,

where ℓ∗∗θt (θ̂, f̂ , ĝ) = ζ̂t−1
σ̂2
ζ
â + ŝ2(ζ̂t)

(
∂ log λ̂t

∂θ
− â− b̂ 1

λ̂t

)
with σ̂2

ζ =
∑T

t=1(ζ̂t − ζ̂)2/T , ζ̂ =∑T
t=1 ζ̂t/T and λ̂t = λt(θ̂, ĝ). Additionally, we have â = 1

T

∑T
t=1

∂ log λ̂t

∂θ
− b̂ 1

T

∑T
t=1

1

λ̂t
and

b̂ =
1
T

∑T
t=1

1

λ̂t

∂ log λ̂t
∂θ

−κ̂ 1
T

∑T
t=1

∂ log λ̂t
∂θ

1
T

∑T
t=1

1

λ̂t

1
T

∑T
t=1

1

λ̂2t
−κ̂

(
1
T

∑T
t=1

1

λ̂t

)2 where κ̂ = 1 − 1/I2(f̂)σ̂
2
ζ . Here, 1̂t is a trimming

function needed theoretically to reduce the effect of small density estimates. In practice, we

have found reasonable performance without trimming. One possible trimming scheme was

considered in Linton and Xiao (2007). In the literature on “adaptive estimation”, a number

of other devices are used primarily to promote simple proofs. These include discretization
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of the initial estimator and sample splitting, see e.g. Kreiss (1987) and Linton (1993).

We may also update the estimator of g in this case by the one-step improvement

˜̃gLocL(u) = ĝ(u)− L̂−1
gg (ĝ(u);u)L̂g(ĝ(u);u),

where we have L̂g(g;u) = ∂L̂(g;u)/∂g and L̂gg(g;u) = ∂2L̂(g;u)/∂g2 with L̂(g;u) =∑T
t=1Kh†(t/T − u)

(
log f̂

(
ζ̃t(g)

)
− log g

)
and ζ̃t(g) = ℓt

gλ̂t(θ̂)
, t = 1, . . . , T, where h† is

another bandwidth sequence.

4 Large sample properties

We suppose that ℓ∗t is stationary and alpha mixing. This can be shown to hold under the

parameter restrictions provided ζt is i.i.d. It may also hold when ζt itself is only described

as a stationary mixing process although this can be difficult to establish; we give further

discussion in the Supplementary material. We define the long run variance for a stationary

mixing process xt as lrvar(xt) =
∑∞

j=−∞ cov(xt, xt−j).

Assumption A1. Suppose that g(.) ∈ G, where for c > 0 G ={
g : g : [0, 1] → R+, g(x) ≥ c,

∣∣g′′(x)∣∣ < ∞ for all x ∈ (0, 1), and g′′+(0), g
′′
−(1) exist

}
.

Define ||g|| =
(∫ 1

0
g(u)2du

)1/2
and ||g||∞ = supu∈[0,1] |g(u)| for all g ∈ G.

Assumption A2. Suppose that {vt}, where vt = λtζt− 1, is a stationary sequence with

E(vt) = 0 and E(|vt|2+δ) ≤ C < ∞ for some δ > 0. Furthermore, vt is alpha mixing with

for some C < ∞ and ρ > (6 + 2δ)/δ, α(k) ≤ Ck−ρ.

Assumption A3. Suppose that K is symmetric about zero with compact support [−1, 1]

such that K(±1) = 0 and K is thrice differentiable where K ′′′ is Lipschitz continuous on

[−1, 1]. Let ||K||2 =
∫ 1

−1
K(s)2ds, and µj(K) =

∫ 1

−1
sjK(s)ds, j = 0, 1, 2.

Assumption A4. Define M(θ, g) = limT→∞ E
(
MT (θ, g)

)
. For all δ > 0, there is an

ϵ > 0 such that inf∥θ−θ0∥>δ

∥∥M(θ, g0)
∥∥ ≥ ϵ. Uniformly for all θ ∈ Θ, the function M(θ, g)
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is continuous in g (with respect to the L2 metric) at g = g0. For all sequences of positive

numbers δT → 0, supθ∈Θ,∥g−g0∥∞≤δT

∥∥MT (θ, g)−M(θ, g0)
∥∥ = oP (1).

Assumption A5. The ordinary partial derivative and pathwise derivatives Γ(θ, g0) =

∂M(θ,g0)
∂θ

and Γ2(θ, g0) ◦ (g− g0) =
∂
∂τ
M(θ, g0 + τ(g − g0))

∣∣∣
τ=0

are assumed to exist in all di-

rections θ ∈ Θϵ ⊂ Θ, g ∈ Gϵ ⊂ G, where Θϵ,Gϵ are small neighborhoods of θ0, g0 respectively.

The matrix Γ(θ, g0) is continuous in θ at θ = θ0 and Γ(θ0, g0) is of full rank .

Assumption A6. For all positive sequences δT , ωT with δT → 0 and T 1/4ωT → 0

(i) sup∥θ−θ0∥≤δT ,∥g−g0∥≤ωT
ω−2
T

∥∥M(θ, g)−M(θ, g0)− Γ2(θ, g0) ◦ (g − g0)
∥∥ ≤ C,

(ii) sup∥θ−θ0∥≤δT ,∥g−g0∥≤ωT
ω−1
T

∥∥Γ2(θ, g0) ◦ (g − g0)− Γ2(θ0, g0) ◦ (g − g0)
∥∥ = o(1),

(iii) sup∥θ−θ0∥≤δT ,∥g−g0∥≤ωT

√
T
∥∥MT (θ, g)−M(θ, g)−MT (θ0, g0)

∥∥ = oP (1).

Assumption A4 is sufficient for consistency of θ̂ given that our estimator ĝ is uniformly

consistent and ĝ ∈ G with probability one. Assumptions A5 and A6 are needed for asymp-

totic normality of θ̂. These conditions have been verified in a number of different model

settings under more primitive conditions, see Chen et al. (2003). We establish in our treat-

ment of the properties of ĝ that it is uniformly consistent at a rate that can be better

than T−1/4, which is also required for this theory. The term Γ2(θ, gx0) ◦ (g− g0) determines

the correction term in the limiting variance and is established in Appendix D. We also

establish in the appendix that
√
T
(
MT (θ0, g0) + Γ2(θ0, g0) ◦ (ĝ − g0)

)
satisfies a CLT. This

as usual requires undersmoothing of the nonparametric estimation part, e.g. using half of

the selected bandwidth. The next two assumptions are needed for the estimators based on

the iid error assumption, A7 is for the case where the error density is parametric and A8

is for the case where it is nonparametrically treated.

Assumption A7. We suppose that Ψk,l(x;φ) = ∂k+l

∂φk∂xl log fφ(x) exists and is con-

tinuous in both its arguments in a small neighborhood of φ0 and in all x ∈ R+ for
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k, l = 1, . . . , 4 and that supφ:|φ−φ0|≤cT−1/2 |Ψk,l(ζ;φ) − Ψk,l(ζ;φ0)| ≤ R(ζ) for some mea-

surable function R(.), where E
((

ζ lR(ζ)
)κ)

, E
((

ζ l|Ψk,l(ζ;φ)|
)κ)

< ∞ for some κ ≥ 4

and for l = 0, 1. Furthermore, the efficient information matrix I∗
ηη(η) =

 I∗
θθ I∗

θφ

I∗
φθ I∗

φφ

 = E
(
ℓ∗θtℓ

∗⊺
θt

)
E
(
ℓ∗θtℓ

∗⊺
φt

)
E
(
ℓ∗φtℓ

∗⊺
θt

)
E
(
ℓ∗φtℓ

∗⊺
φt

)
 is well defined and positive definite at η = η0 and continuous

in η in a neighborhood of η0.

Assumption A8. We suppose that f(.) is three times continuously differentiable in

x ∈ R+. Furthermore, the efficient information matrix I∗∗
θθ (θ, f, g) = E

(
ℓ∗∗θt ℓ

∗∗⊺
θt

)
is well

defined and positive definite at θ = θ0 and continuous in θ in a neighborhood of θ0.

4.1 Conditional moment restrictions

We first consider the properties of the GMM estimator based on the first conditional mo-

ment restriction. This estimator makes the weakest assumptions about the process ζt and

so it is more robust than the subsequent procedures we analyze.

4.1.1 Nonparametric trend

We first consider the estimator ĝ(u), u ∈ (0, 1), that is based on smoothing of the raw

illiquidity. We may rewrite the model (2), (3) as a nonparametric regression model with

trend in mean and variance ℓt = g(t/T ) + g(t/T )vt, where vt is a mean zero stationary

and alpha mixing series. We adapt the results of Francisco-Fernández and Vilar-Fernández

(2001) for local polynomial estimators in the case without trending heteroskedasticity to

obtain the following central limit theorem.

Theorem 1. Suppose that A1-A3 hold and h = cT−1/5 for c > 0. Then for u ∈ (0, 1)

√
Th
(
ĝ(u)− g(u)− h2b(u)

)
=⇒ N

(
0, V1(u)

)
, b(u) = 1

2
µ2(K)g′′(u) ; V1(u) = g2(u)||K||2σ2

v,∞.
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where σ2
v,∞ is the long-run variance of vt, i.e. lrvar(vt). The estimator is consistent and

asymptotically normal with optimal rate of T−2/5 based on the smoothness assumption.

Bandwidth selection and inference procedures require the estimation of lrvar(vt), which in

general requires further justification. Instead, it may be preferable to work with the refined

estimator g̃(u) based on the estimator of θ. We have for this estimator the following CLT.

Theorem 2. Suppose that Assumptions A1-A3 hold, that θ̂ is
√
T - consistent, that h̃ =

cT−1/5 for some c > 0 and Th5 → 0 and Th/ log T → ∞. Then for any u ∈ (0, 1)

√
T h̃
(
g̃(u)− g(u)− h̃2b(u)

)
=⇒ N

(
0, V2(u)

)
, b(u) =

1

2
µ2(K)g′′(u); V2(u) = g2(u)||K||2σ2

ζ .

The bias term is the same as in Theorem 1 by virtue of the undersmoothing of the first

step, see Linton and Xiao (2007). The limiting variance is different though and in particular

it is proportional to the variance of ζt, which is generally smaller and easier to estimate

than the long run variance of vt. When ζt is i.i.d., E(λ2
t (ζt − 1)2) = E(λ2

t )σ
2
ζ ≥ σ2

ζ , because

E(λ2
t ) ≥ 1 by the Cauchy-Schwarz inequality since E(λt) = 1. For this estimator, consistent

standard errors (assuming undersmoothing) can be based on V̂ (u) = g̃2(u)||K||2σ̂2
ζ where

σ̂2
ζ is an estimator of σ2

ζ , e.g. the sample variance of ζt after estimation. The omission

of the bias effect in the confidence interval has been subject to criticism and debate and

many alternative inference approaches have been suggested, at least in the i.i.d. case, see

for example Schennach (2015) and Calonico et al. (2018). One simple approach here is to

use the pilot model method used in bandwidth selection, Silverman (1986). Specifically,

suppose that g(u) = exp(a0 + a1u) for some unknown parameters a0, a1. In that case,

g′′(u) = a21 exp(a0 + a1u) and given estimates of a0, a1 which can be obtained by the OLS

of logarithmic liquidity on a constant and trend (with some adjustment). One can include

the estimated bias in the inference procedure.

We may further use this pilot model to select the bandwidth. Since g′′(u)/g(u) = a21, a

“rule-of-thumb” optimal bandwidth procedure would be h(u) =
(

||K||2σ̂2

µ2
2(K)â41

)1/5
T−1/5, where
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σ̂2 = σ̂2
v,∞ if we smooth ℓt, e.g. using a Newey-West estimator, and σ̂2 = σ̂2

ζ if we work

with ℓt/λ̂t. Here, h(u) happens to be constant across u ∈ (0, 1). One may also consider

higher-order polynomials for the log trend to capture different shapes. In this case, the

term â41 in h(u) should be replaced by the corresponding quantity of
∫ 1

0
(g′′(u)/g(u))2du.

As undersmoothing is required for the first stage bandwidth h in Theorem 2, a possible

practical device is to use a fraction of the rule-of-thumb bandwidth, such as a half, which

we will employ in our empirical applications.

Hart (1991) showed that conventional cross-validation fails in settings that include our

estimator ĝ(.), that is, the usual recipe for selecting h based on minimizing leave-one-out (or

equivalently penalized) squared residuals will produce h ∼ 0. This arises because the serial

correlation in error term leads to a bias in the risk estimation. He proposed a modification

to address this, that essentially involved estimating the long run variance. We note that

our refined estimator g̃(.) is not subject to this criticism, since the error term in that case

is a martingale difference sequence. This suggests (although we have not proven this here)

that standard cross-validation based on {ℓt/λ̂t} would produce an asymptotically optimal

bandwidth choice for g̃(.). In summary, the estimator g̃(u) has an advantage over ĝ(u)

because of the simplicity of handling inference and bandwidth choice. On the other hand,

the estimator ĝ(u) is a simple linear estimator and is robust to the specification of λt.

4.1.2 Parametric components

Let θ = (β, γ)⊺ be interior values of set Θ, where Θ = {θ : ϵ̃ ≤ β, γ, β + γ ≤ 1− ϵ̃} ⊂ R2 for

some ϵ̃ > 0. This guarantees that for example λ∗
t (θ) ≥ ϵ̃ for all θ ∈ Θ. It also ensures that

λt possesses at least a first moment. In practice, ϵ̃ is chosen to be machine zero. Define

wt = λt(ζt − 1)zt−1 +
1−β−γ
1−β

(λtζt − 1)E(zt−1).

Theorem 3. Suppose that Assumptions A1-A6 hold, that
√
Th2 → 0 and Th/ log T → ∞,
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and that wt is a stationary mixing process satisfying A2. Then as T → ∞

√
T
(
θ̂ − θ

)
=⇒ N(0, V ), V = (Γ⊺WΓ)−1 (Γ⊺WΩWΓ) (Γ⊺WΓ)−1 , Ω = limT→∞ var

(
1√
T

∑T
t=1wt

)
.

In general, the asymptotic variance of θ̂ will depend on the long run variance of process

wt. Inference procedures may be based on the Newey-West method applied to the residuals

ŵt = λ̂t(ζ̂t − 1)zt−1 +
1−β̂−γ̂

1−β̂
(λ̂tζ̂t − 1) 1

T

∑T
t=1 zt.

4.2 Restrictions from i.i.d. shocks

We suppose here that ζt is i.i.d. with mean one and density f and that we have initial

consistent estimators of g(.), θ available from the GMM procedure described above, say.

In the case where f is parametrically specified with parameters φ, the model is semi-

parametric with parameters η = (θ⊺, φ)⊺ and unknown function g. We first consider the

local likelihood estimator of the trend function based on the estimated φ̂.

Theorem 4. Suppose that assumptions A1-A3 hold and that η̂ is
√
T - consistent. Suppose

that h∗ = cT−1/5 for some c > 0 and that Th5 → 0 and Th/ log T → ∞. Then for any

u ∈ (0, 1), the local likelihood estimator satisfies for some bias b(u),

√
Th∗

(
g̃LocL(u)− g(u)− h2

∗b(u)
)
=⇒ N

(
0, V (u)

)
, V (u) = ||K||2I−1

2 (f)g(u)2.

We note that regarding the estimation of g(.) the asymptotic distribution is the same

whether the error density is known or this is estimated parametrically or nonparametrically,

Linton and Xiao (2001). This estimator improves on ĝ(u) and g̃(u) when i.i.d. assumption

is correct by reducing the asymptotic variance, using the standard Cramer-Rao arguments

see Tibshirani (1984). We define pointwise confidence bands in Hafner et al. (2023).

We next turn to the properties of the estimated parametric components defined in (10).

We need some further regularity conditions, basically smoothness and moment conditions

about the parametric density function.
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Theorem 5. Suppose that Assumptions A1-A7 hold and that
√
Th2 → 0 and Th/ log T →

∞. Suppose that η̂ is
√
T -consistent. Then as T → ∞

√
T (η̃ − η) =⇒ N(0, I∗

ηη(η, g)
−1).

Furthermore, the asymptotic variance may be estimated consistently by I∗
ηη(η̃, g̃)

−1.

In the case where f is nonparametrically specified, the model is semiparametric with

parameters θ and unknown functions g, f. We turn to the properties of the estimated

parametric components defined in (13).

Theorem 6. Suppose that Assumptions A1-A6 and A8 hold and that
√
Th2 → 0 and

Th/ log T → ∞ and
√
Th2

f → 0 and Thf/ log T → ∞. Suppose that θ̂ is
√
T -consistent.

Then as T → ∞
√
T

(˜̃
θ − θ

)
=⇒ N(0, I∗∗

θθ (θ, f, g)
−1).

Furthermore, the asymptotic variance may be estimated consistently by I∗∗
θθ (θ̂, f̂ , ĝ)

−1.

5 Monte Carlo study

In the Monte Carlo study, we simulate the illiquidity series using the model specified in

(2) and (3) with a quadratic polynomial trend, i.e. g(t/T ) = 0.15 − 0.4(t/T ) + 0.3(t/T )2.

In addition, we assume that the error term ζt follows a Burr distribution with two shape

parameters γB = 1.35, λB = 0.25. We consider two cases for the λt process with (β, γ) =

(0.85, 0.1), (0.92, 0.07). The model is estimated using the GMM approach and the efficient

semiparametric ML estimation. For the latter, we examine both the case with a misspecified

error distribution (Weibull) and the case with the correctly specified error density (Burr).

We report in Table 1 and Table 2 the estimation accuracy results – measured by bias and

standard deviation – for 2000 replications with sample size T ∈ {500, 1000, 2000, 5000, 10000}.
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Table 1: Bias and standard deviation of parameter estimates: (β, γ) = (0.85, 0.1).

GMM ML-Weibull ML-Burr

β γ β γ β γ

Bias

T=500 0.05535 -0.02275 -0.03453 -0.00782 -0.03257 -0.00892

T=1000 0.04477 -0.01781 -0.02962 -0.00041 -0.02677 -0.00154

T=2000 0.02837 -0.01410 -0.02507 -0.00125 -0.02278 -0.00157

T=5000 0.01622 -0.00916 -0.01328 -0.00046 -0.01196 -0.00076

T=10000 0.00890 -0.00586 -0.00884 -0.00005 -0.00821 -0.00021

StdDev

T=500 0.05315 0.03854 0.08355 0.03566 0.07862 0.03268

T=1000 0.04244 0.02930 0.04800 0.02357 0.04344 0.02165

T=2000 0.03826 0.02294 0.03026 0.01643 0.02835 0.01531

T=5000 0.02673 0.01529 0.01753 0.01023 0.01643 0.00965

T=10000 0.02076 0.01148 0.01191 0.00705 0.01117 0.00661

Table 2: Bias and standard deviation of parameter estimates where (β, γ) = (0.92, 0.07).

GMM ML-Weibull ML-Burr

β γ β γ β γ

Bias

T=500 0.01810 -0.01712 -0.02706 -0.01756 -0.02582 -0.01769

T=1000 0.01652 -0.01697 -0.02271 -0.00652 -0.02019 -0.00702

T=2000 0.01152 -0.01500 -0.01697 -0.00529 -0.01527 -0.00528

T=5000 0.00544 -0.00900 -0.00858 -0.00173 -0.00764 -0.00187

T=10000 0.00284 -0.00600 -0.00555 -0.00061 -0.00497 -0.00077

StdDev

T=500 0.04327 0.03164 0.08438 0.03064 0.07458 0.02842

T=1000 0.03590 0.02643 0.03487 0.01774 0.03069 0.01637

T=2000 0.02868 0.02005 0.01922 0.01186 0.01731 0.01104

T=5000 0.02111 0.01646 0.00953 0.00720 0.00876 0.00665

T=10000 0.01459 0.01074 0.00601 0.00479 0.00558 0.00447

Focusing on the bias criterion, we observe that the bias decreases with respect to the sam-

ple size. The ML estimates of the β parameter have lower bias than the GMM ones for low

levels of persistence (β + γ = 0.95 in Table 1). However, the opposite pattern is observed

for higher levels of persistence (β + γ = 0.99 in Table 2). For the γ parameter, the ML

method gives more accurate estimates. We further note that the GMM approach tends to

overestimate the β parameter while it underestimates the γ parameter, which leads to a
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more accurate estimation of the overall degree of persistence β + γ compared to the ML

approach. For the standard deviation criterion, we observe that it decreases when the sam-

ple size increases and the rate of decrease for the ML estimation method is faster than the

GMM one, which roughly corresponds to a factor of
√
T . Moreover, the standard deviation

of the ML estimates is overall lower, with the lowest levels achieved by the ML estimation

based on the Burr distribution. This observation confirms that the ML estimation with

correctly specified distribution provides the most efficient estimates.

6 Empirical study

The ability to accurately model the illiquidity series is useful to quantify conditions in

financial markets and track their evolution over time. In our application, we consider the

five largest US tech stocks (Fab 5) and Bitcoin to analyze their illiquidity series using

our DArLiQ model.2 We summarize in Table 3 the descriptive statistics of the illiquidity

series.3 The Bitcoin asset is an order of magnitude less liquid compared to the tech stocks

during this period and the illiquidity series of Bitcoin is more volatile, exhibits higher

skewness and has thicker tails. The five tech companies have comparable levels of liquidity

– although Apple stock is slightly more liquid than the others. Moreover, the illiquidity of

Amazon stock has higher skewness and thicker tails compared to the other tech companies.

Table 3: Summary statistics for daily illiquidity – ℓt × 1010.

Facebook Amazon Apple Google Microsoft Bitcoin

Mean 0.0372 0.0313 0.0187 0.0615 0.0424 1.7013

StdDev 0.0295 0.0389 0.0148 0.0499 0.0398 4.1201

Skewness 1.3673 2.5656 1.1146 1.1921 1.6408 4.0626

Kurtosis 6.2978 10.5467 4.1849 4.5345 6.1514 24.9266

2We use data retrieved from Yahoo Finance. The sample starts from the first available data point for

each asset until October 7th, 2021. Sample R code can be found at https://github.com/lw1882/DArLiQ.
3To make it comparable, we consider the daily Amihud illiquidity ratios in their common sample period.
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We plot in Figures 3 and 4 (Appendix G.1) the illiquidity and log illiquidity series.

To manage boundary issues, we use the local linear method to obtain an initial consistent

estimator of the trend g(t/T ) where we opt for a Gaussian kernel. In this step, we choose

the bandwidth according to the rule of thumb derived in Section 4.1.1 and it is reported

in the second row of Table 5.4 The red curves represent the estimated trend functions and

their logarithms. Figure 3 shows that the estimated g(t/T ) serves as a good approximation

for the time-varying mean of the illiquidity series.5 A strong downward trend is observed

for most illiquidity series, indicating an overall improvement in liquidity conditions over

time. We notice a temporary worsening in liquidity conditions during significant market

events such as the burst of the dot-com bubble and 2007-2009 Global Financial Crisis.

6.1 Estimation results

We introduce the detrended illiquidity series, ℓ∗t = ℓt/g(t/T ), which is assumed to be mean

stationary. For the parameters θ of the λt process, we first consider a GMM approach, which

is based only on the first conditional moment restriction. We then focus on the estimation

results using a semiparametric MLE approach based on an i.i.d. shock assumption.

6.1.1 Estimation based on conditional moment restrictions

We use the GMM approach based on the conditional moment restrictions to obtain consis-

tent initial estimates of the λt process parameters θ. We consider the minimalist case

where the model is estimated using only the first conditional moment restriction, i.e.

E
[
ℓ∗t
λt

− 1 | Ft−1

]
= 0. We further improve the estimates of the g(t/T ) function using

the estimated λ̂t = λ̂t

(
θ̂GMM

)
obtained in the previous step. This, in turn, allows us to

4We opt for a polynomial of order three for the log trend which allows the trend function to flexibly

capture the various shapes exhibited in the data.
5Note that the log g(t/T ) is higher than the mean level of log ℓt due to Jensen’s inequality.
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further improve the estimates of the θ parameters. We report the initial and the updated

estimates with associated standard errors in Table 4. It can be observed that the parameter

estimates are statistically significant. In addition, the sum of the coefficients β + γ is close

to one, indicating high persistence in the short-run dynamics of the illiquidity series.6

Table 4: Estimated parameters of the λt process based on first moment restriction.

Facebook Amazon Apple Google Microsoft Bitcoin

β 0.967 (0.025) 0.937 (0.017) 0.912 (0.016) 0.978 (0.013) 0.939 (0.015) 0.960 (0.014)

γ 0.027 (0.014) 0.063 (0.017) 0.084 (0.014) 0.022 (0.010) 0.053 (0.010) 0.034 (0.010)

βU 0.969 (0.022) 0.937 (0.017) 0.914 (0.015) 0.981 (0.011) 0.941 (0.013) 0.960 (0.013)

γU 0.027 (0.014) 0.062 (0.016) 0.083 (0.014) 0.019 (0.009) 0.054 (0.010) 0.036 (0.010)

σ̂U
ζ 0.712 0.717 0.914 0.767 0.724 0.930

tailUζ 7.196 6.428 3.746 5.502 5.997 3.370

Note: The estimated parameters are θ = (β, γ) for the λt process. The U superscript indicates that the estimates

are the ones obtained using the updated trend function. The numbers in parentheses are the standard errors of the

corresponding parameter estimates. σ̂U
ζ is the sample standard deviation of ζ̂t and tailUζ is the tail index estimated

using the regression log(Rank− 1/2) = a− b log(Size) based on the 5% largest fitted shocks ζ̂t.

We improve the estimates of the trend function based on the estimated λ̂t process, i.e.

we estimate the g(.) function based on ℓt/λ̂t. In this step, we choose the bandwidth using a

leave-one-out cross validation approach, see e.g. Chu and Marron (1991) for more details.

We can observe from Table 5 that the bandwidth to update the trend function is much

smaller than the bandwidth used in the initial step as there is less variation in the ℓt/λ̂t

series.7 We further plot the log transforms of the initial and updated estimates of the trend

function, i.e. log g(t/T ), together with the log illiquidity series in Figure 5. We observe

6We note that, in most cases, 1 falls inside the confidence interval of β + γ. This corresponds to the

case where the λt process is strongly stationary but not weakly stationary. The moment-based estimator

of g(.) is not appropriate in this setting, but this can be addressed using the median smoothing method

proposed by Koo and Linton (2015). We show in Appendix J that the normalized trend functions obtained

with the mean and median smoothing methods are comparable and the choice of the smoothing method

has a minor impact on the parameter estimates for the λt process.
7The values reported in Table 5 are the optimal bandwidth selected according to the rule-of-thumb

(h0) and cross validation approach (h). When undersmoothing is required, we use half of the selected
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that the updated trend function estimates are different from the initial estimates but only

to a minor extent. In addition, the updated estimates of the λt process parameters are

slightly different from the initial estimates with the overall degree of persistence (β + γ)

being almost the same. This observation indicates that a 2-step approach consisting in first

using a local linear estimator for the trend function and then estimating the λt process and

its associated parameters θ can be a viable option in empirical applications.

Table 5: Bandwidth choice for the initial estimate and the updated trend function.

Facebook Amazon Apple Google Microsoft Bitcoin

T 2362 6140 10292 4314 8966 2574

h0 0.038 0.059 0.046 0.092 0.018 0.035

h 0.020 0.018 0.013 0.022 0.013 0.027

Note: T is the total number of observations in the sample period. h0 is the

bandwidth used for the initial estimate of the trend function which is obtained

following the rule of thumb. h is the bandwidth used when updating the trend

function and is selected using the leave-one-out cross validation approach.

In addition, we compute the sample standard deviation σ̂U
ζ of fitted shock series ζ̂t

obtained using the updated λt parameters. We report the values in the last part of Table 4

and we observe that the sample standard deviations of all assets are below one, indicating

under-dispersion. Lastly, we estimate the tail index of the shock series which is between

three and four for Apple and Bitcoin while it is between six and eight for the other assets.

Our results suggest that the shocks of Apple and Bitcoin have thicker tails.8

6.1.2 Estimation: i.i.d. error term with parametric density

We estimate the model using the semiparametric MLE approach where we assume an i.i.d.

error term. The conditional distribution of the error term ζt can be chosen within the class

of distributions satisfying the desired requirements, i.e. the density having non-negative

bandwidth, i.e. h0/2 and h/2.
8See Appendix I.1 for more details on the tail index analysis.
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Table 6: Fully efficient estimates of the λt process parameters in the parametric (Weibull) case.

Facebook Amazon Apple Google Microsoft Bitcoin

β 0.885 (0.044) 0.914 (0.003) 0.901 (0.002) 0.927 (0.005) 0.917 (0.004) 0.896 (0.016)

γ 0.058 (0.007) 0.086 (0.003) 0.095 (0.002) 0.061 (0.003) 0.068 (0.002) 0.066 (0.006)

φ 1.366 (0.026) 1.358 (0.013) 1.308 (0.001) 1.266 (0.013) 1.379 (0.011) 1.136 (0.010)

σζ 0.741 0.744 0.771 0.796 0.734 0.882

Note: Estimated parameters are θ = (β, γ, φ) for λt process. φ is the shape parameter of the Weibull distribution

with mean 1 and standard deviation σζ of

√√√√ Γ
(
1+ 2

φ

)
(
Γ2

(
1+ 1

φ

)) − 1. The numbers in parentheses are standard errors.

support with unit mean and finite variance σ2
ζ . We present estimation results assuming

that ζt follows a Weibull(Γ(1 + φ)−1, φ) distribution with shape parameter φ. Based on

the local linear estimator of g(t/T ), we first obtain a consistent estimator of the λt process

parameters via the Quasi-Maximum Likelihood (QML) estimation approach. We then

obtain the fully efficient estimates with a one-step update using the efficient scores based

on the initial consistent estimators as introduced in Section 3.2.1.

We report the estimated parameters with their standard errors in Table 6. The estimates

of the dynamic parameters of λt, β and γ, are quite similar across assets, and all illiquidity

series exhibit a high degree of persistence as the sum of the estimated coefficients β + γ is

close to one. These findings are quite analogous to univariate GARCH models for volatility.

The estimated shape parameters of the Weibull error terms have a higher dispersion across

assets and range from 1.14 to 1.38, indicating that the volatility of ζt ranges from 0.73 to

0.88. This is consistent with the observation that the five tech stocks have comparable

volatilities while Bitcoin has much higher volatility.

We provide diagnostics on the validity of our assumptions on the error term ζt. Con-

cerning the i.i.d. assumption, we plot in Figures 6 and 7 (Appendix G.3) respectively the

ACF of ζt and ζ2t . We observe that overall there is no evidence suggesting autocorrelation

in the residuals or squared residuals. Moreover, we use the Probability Integral Transform

(PIT) to check how well the assumed Weibull distribution fits the data. The histograms of
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the PITs (shown in Figure 8 Appendix G.3) are quite close to a uniform distribution.

The tail index analysis of the fitted shock series ζ̂t in Section 6.1.1 suggests that the

shocks have a thicker tail than the Weibull while exhibiting under-dispersion features. We

thus also consider fat-tailed distributions in our analysis, such as the Burr – which nests the

Weibull and Lomax – and Inverse Burr distributions. The estimation results in Appendix

I.2 show that the Lomax distribution lacks the ability to capture the under-dispersion

feature with unit mean restriction. The Burr distribution reduces to the Weibull except for

Apple and Bitcoin whose shock terms have thicker tails than the other stocks. The Inverse

Burr outperforms the Weibull and Burr in terms of log likelihood except for Microsoft. No

distribution among the ones considered above consistently provides a better fit and we thus

refrain from searching for more general distributions. Instead, we focus in the next section

on whether a more flexible nonparametric density can provide a better fit to the data.

We further improve the estimation of g(t/T ) by maximizing the local likelihood based

on the estimated λ̂t and the error density. The log transforms of the initial and updated

estimates of the trend function, i.e. log g(t/T ), are plotted in Figure 9 (Appendix G.3)

together with the log illiquidity series. As in the GMM case (Appendix G.2), the updated

trend function estimates are different from the initial estimate but only to a minor extent.

6.1.3 Estimation: i.i.d. error term with nonparametric density

Table 7: Fully efficient estimates of the λt process parameters in the nonparametric case.

Facebook Amazon Apple Google Microsoft Bitcoin

β 0.886 (0.031) 0.914 (0.002) 0.911 (0.002) 0.931 (0.004) 0.921 (0.003) 0.906 (0.010)

γ 0.059 (0.006) 0.085 (0.002) 0.086 (0.002) 0.058 (0.002) 0.067 (0.002) 0.068 (0.005)

Note: The estimated parameters are θ = (β, γ) for λt process. The numbers in parentheses are standard errors.

We investigate whether replacing the parametric error density f with a nonparametric

kernel estimator can further improve the model fit to data. We plot, in Figure 10 (Appendix
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G.4), the estimated nonparametric density (using residuals ζ̂t from the GMM case) against

the Weibull density using the shape parameter estimate from Section 6.1.2. We observe

that the estimated Weibull density curves do not fall between the pointwise two standard

deviation bands of the estimated nonparametric densities, suggesting that the difference

between the estimated parametric and nonparametric densities is statistically significant.

Table 8: Log likelihood comparison between parametric (Weibull) and nonparametric cases.

Facebook Amazon Apple Google Microsoft Bitcoin

Weibull -2147.32 -3659.67 -6839.50 -3862.46 -7790.52 -2337.09

Nonparametric -2111.33 -3594.10 -6618.35 -3800.48 -7767.02 -2315.68

Difference 35.99 65.57 221.15 61.98 23.50 21.41

Note: The difference is logLL in the nonparametric case minus logLL in the parametric case.

The estimated nonparametric density allows us to further improve the ML estimation

for the λt process. We obtain the fully efficient estimates in the nonparametric case using

the one-step update approach based on the efficient scores introduced in Section 3.2.2.

The estimates and standard errors are reported in Table 7. Comparing the estimated λt

parameters in the parametric (Table 6) and nonparametric case (Table 7), we observe that

the differences are quite small. This indicates that gains in efficiency with respect to GMM,

using a one-step update based on the efficient scores, are quite robust with respect to the

distribution of ζt. However, goodness-of-fit of the parametric and nonparametric models,

measured in terms of log-likelihood, is quite different, see results in Table 8. We conclude

that the ML estimation assuming a Weibull density for ζt provides good performance,

but using a nonparametric estimator can further improve the fit in terms of likelihood. In

particular, if distributional aspects of the fitted model such as tail properties are important,

e.g. for risk management purposes, then the nonparametric model is clearly be preferred.
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6.2 Risk premium

Amihud (2002) considers an autoregressive model for annual and monthly market illiquidity

and then relates this to the market risk premium. Specifically, he estimates the regression

Rmt−Rft = a+ b liqet + c liqut + εt, where Rmt and Rft are the (annual or monthly) market

return and risk-free rate respectively. liqet , liq
u
t are the expected and unexpected components

of illiquidity determined from the first order autoregression liqt = c0 + c1 liqt−1 + ηt, where

liqt is the (annual or monthly) average illiquidity that we called At or rather its logarithm.

His estimation results strongly support his prior hypothesis that stock excess return is an

increasing function of expected illiquidity, and unexpected illiquidity has a negative effect

on contemporaneous unexpected stock return (i.e., b > 0 and c < 0).

We reproduce his analysis within our daily model framework, which has three compo-

nents to illiquidity: the slowly varying trend, the short run anticipated dynamic component

and the unanticipated shock. We first consider the specification for daily stock returns

Rmt −Rft = a+ bg(t/T ) + cλt + dζt + εt, (14)

where g(.), λt and ζt are defined above. This allows the risk premium to depend on all

three of the components of illiquidity of our model, see Escanciano et al. (2017) for related

specifications. It is difficult to tie together our model for ℓt with these regressions (but the

same comment would apply to the original work of Amihud (2002)). One criticism might be

that we have used returns to construct liquidity and therefore this variable appears on both

sides of the regression. However, we can think of returns as being composed of a direction

and a magnitude component from the decomposition R = |R| sign(R). Our liquidity model

is about the magnitude |R|, (directional information is not used at all by our liquidity

model), whereas the dependent variable of regression (14) reflects the direction.

We note that there exists a strong downward trend in illiquidity while returns are some-

what stationary. This suggests that the relationship between the long-run trend of liquidity
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and the stock excess return would be less significant.9 Therefore, in the application, we

focus on the alternative regression for the detrended equity premium, that is,

Rmt −Rft − E
(
Rmt −Rft

)
= α + γλt + δζt + εt,

To be consistent with our assumptions about λt, ζt, we should have α = −(γ + δ) but we

don’t impose this in the estimation although data suggest that α̂ ≃ −(γ̂ + δ̂). In any

case, there is a generated regressor issue here when we replace λt and ζt by their estimated

quantities. Therefore, we compute the standard errors for the coefficient estimates using

the nonparametric bootstrap procedure outlined in Appendix F.

Table 9: Coefficient estimates of the risk premium regression.

α γ δ

−0.076 0.172∗∗∗ −0.096∗∗∗

(0.058) (0.056) (0.021)

Note: We estimate the regression based on Equation (6.2). Returns

are expressed in percentage points. Standard errors are based on the

nonparametric bootstrap procedure with 500 replications (see Appendix

F for details). Significance level ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

We use the daily historical data of the S&P 500 index to carry out the analysis. The

illiquidity and log illiquidity together with the return series are plotted in Figure 11 (Ap-

pendix G.5). We report in Table 9 the estimation results based on Equation (6.2).10 We

observe that the estimated γ coefficient for the short-run expected illiquidity component

λt is positive and significant indicating that the expected market excess return is an in-

creasing function of the short-run expected illiquidity. This is consistent with the intuition

that higher expected market illiquidity would make investors demand higher excess returns

to compensate for this risk exposure. Moreover, the estimated δ for the shock term ζt is

9This is confirmed by regression results based on Equation (14). The coefficient estimates for the

parameter b associated with the long-run trend illiquidity component are not significant.
10The time-varying unconditional equity premium is obtained via a local linear estimator.
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negative and significant, suggesting that unexpected market illiquidity has a negative effect

on stock excess return. This could be because stock prices would likely fall when illiquidity

unexpectedly rises, thus decreasing expected returns.
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