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Abstract

A new algorithm is proposed for dynamic portfolio selection that takes a sector-specific struc-

ture into account. Regularizations with respect to within- and between-sector variations of

portfolio weights, as well as sparsity and transaction cost controls, are considered. The

model includes two special cases as benchmarks: a dynamic conditional correlation model

with shrinkage estimation of the unconditional covariance matrix, and the equally weighted

portfolio. An algorithm is proposed for the estimation of the model parameters and the cali-

bration of the penalty terms based on cross-validation. In an empirical study, it is shown that

the within-sector regularization contributes significantly to the reduction of out-of-sample
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the DCC with nonlinear shrinkage and the equally-weighted portfolio.
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1. Introduction

Portfolio selection remains one of the central topics of empirical finance since its inception

by Markowitz (1952). It is especially challenging in the context of portfolio selection with a

large number of assets, where it is well known that naive implementation of the Markowitz

(1952) results using sample means and variance-covariance matrices leads to poor out-of-

sample performance due to unstable and ill-conditioned estimates. Remedies have been

proposed such as shrinkage methods as in Ledoit and Wolf (2004) and Ledoit and Wolf (2017)

and weight regularization as in DeMiguel et al. (2009a), Brodie et al. (2009) and Fastrich et

al. (2015), which stabilize the ill-conditioned optimization problem. Statistical justifications

for regularization techniques in a portfolio selection context are given by e.g. Puelz et al.

(2015) and Fisher et al. (2020). Candelon et al. (2012) reformulate traditional shrinkage

estimators in terms of a linear regression framework and impose a “double” shrinkage by

adding additional weight penalties such as lasso or ridge, which further stabilizes portfolio

weights and decreases portfolio turnover. Similarly, Ao et al. (2019) show an equivalent

representation of the mean-variance optimization problem as an unconstrained regression,

which they augment by lasso-type constraints to obtain sparsity and obtain consistency of

mean and risk as both the number of assets and sample size increase. Furthermore, as shown

by Jagannathan and Ma (2003), a no-short-sale constraint also serves to stabilize weights

and regularize the optimization problem, as it is equivalent to shrinking large elements of

the covariance matrix. They show empirically that short-sale constrained portfolios perform

as well as those constructed using covariance matrices estimated from factor models and

shrinkage estimators. DeMiguel et al. (2009a) and Fan et al. (2012) generalize this idea by

introducing a gross-exposure constraint that bridges the gap between an unconstrained and

no-short-sale constrained portfolio. Fan et al. (2012) give a theoretical justification for the

empirical results in Jagannathan and Ma (2003).

Although the main objective of portfolio selection is typically formulated in terms of

maximization of the Sharpe ratio, which corresponds to the tangency portfolio of Markowitz

(1952), the estimation and prediction of asset mean returns have proven to be particularly

difficult and noisy, see e.g. Best and Grauer (1991). Many studies, starting at least with

Chan et al. (1999), therefore neglect the mean and concentrate on the minimization of the
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portfolio variance to obtain estimates of the global minimum variance portfolio (GMV). As

shown by Jagannathan and Ma (2003), the GMV outperforms many competing approaches

involving estimation of the mean in terms of Sharpe ratio. This has even been shown for

the naive equally weighted portfolio by DeMiguel et al. (2009b). We therefore refrain from

estimating the mean in this paper and consider the problem of estimating the GMV portfolio.

In a dynamic framework, it is important to take time-varying volatilities and correlations

into account. Many alternative modelling strategies exist, including Bayesian dynamic linear

models, see e.g. Puelz et al. (2020), but we follow a large part of the financial economet-

rics literature by implementing a GARCH-type model combined with dynamic conditional

correlations (DCC) as in Engle (2002). These models can be used to predict volatilities and

correlations up to a certain investment horizon, see Baillie and Bollerslev (1992) and En-

gle and Sheppard (2001). In large dimensions, issues arise for the estimation of DCC-type

models that can be addressed by the composite likelihood method as in Pakel et al. (2020),

combined with shrinkage of the sample covariance matrix that is used for correlation target-

ing as in Hafner and Reznikova (2012). See also Morana (2019) for an alternative approach

to DCC estimation in high dimensions based on regularised semiparametric methods. For

portfolio selection with many assets, Engle et al. (2019) implement a DCC-GARCH model

with composite likelihood estimation and nonlinear shrinkage and show its superior out-of-

sample performance with respect to benchmark portfolios, in particular the ones not taking

the dynamics of volatilities and correlations into account.

Despite the vast literature on portfolio selection, not many studies have taken information

about the industry sectors explicitly into account, although it is well known that this informa-

tion helps to improve predictability of mean returns, volatilities and correlations. Companies

within a given industry sector often compete in the same product market and co-move re-

garding product and technology innovations. They react similarly to permanent shifts in

supply and demand conditions, as well as the regulatory environment. As the industry goes

through expansions and contractions, companies’ growth opportunities and investing and

financing decisions are correlated. For example, Moskowitz and Grinblatt (1999) document

the strong and persistent effects of industry components in stock returns, where industry

momentum strategies are significant and more profitable than individual stock momentum
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strategies. Hou (2007) argue that the lead-lag effect is driven by an intra-industry phe-

nomenon, where returns on big firms lead returns on small firms within the same industry,

which is primarily caused by stock prices’ slow response to negative information. Hence, there

is information clustering at the industry level. Hong et al. (2007) find that stock markets

react with a delay to information contained in industry returns about their fundamentals

and that information diffuses only gradually across markets. Brito et al. (2018) forecast very

large realized covariance matrices of returns using standard firm-level factors (e.g., size, value

and profitability) and imposing additional sectoral restrictions in the residual covariance ma-

trix. Kurose and Omori (2020) propose a multi-block equicorrelation structure to estimate

multivariate stochastic volatility models in large dimensions and apply their model to an

asset allocation exercise with sector as blocks. For portfolio selection, Chen et al. (2020)

take a sector-specific structure into account by allowing to incorporate investor preferences

with respect to industry sectors. They propose a sparse-group selection with the objective

of being sparse across sectors but diversified within favored sectors. Fan et al. (2016) in-

clude sector specific information into a factor model where industry ETFs are included as

additional factors to the CAPM or the three-factor model of Fama and French (1993).

Sparsity and diversification, although conflicting in nature, both are desirable properties

of portfolios, since diversification allows to reduce portfolio weight variability, while sparsity

keeps the number of invested assets and hence transaction costs under control. Moreover,

both have a stabilizing effect on portfolio weights, if diversification is understood as shrinking

towards a fixed weighting scheme. There are however many ways to introduce these properties

into the selection procedure. The choice of Chen et al. (2020) is to impose sparsity between

industry sectors and diversification within sectors via the sparse group lasso of Friedman

et al. (2010) and Simon et al. (2013), an extension of the group lasso of Yuan and Lin (2006).

It is not a priori clear whether this is the best strategy, as one might want to allow for sector-

wide diversification as well, rather than investing in only a few sectors. Furthermore, the

study of Chen et al. (2020) is using a rolling window updating mechanism. From an efficiency

point of view, it would be preferable to have a genuine dynamic model that can be estimated

using all available historical data, and that produces analytical forecasts of volatilities and

correlations, as mentioned above.
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In this paper, we adopt the perspective of a portfolio manager who optimally allocates

funds across assets subject to a set of criteria motivated by investment preferences or con-

straints. Relevant examples of such criteria include restrictions on sectoral exposures, guided

for instance by preliminary screening of relevant investable sectors (Chen et al. (2020)), or

constraints on the distribution of portfolio weights across assets, e.g. by favouring sparse

asset allocations (Puelz et al. (2020)), and over time by promoting stable asset allocation

minimizing transaction costs (Hautsch and Voigt (2019)).

To this end, we propose a new portfolio selection procedure in a dynamic framework

that explicitly accounts for these economically motivated criteria by regularising portfolio

weights accordingly. More specifically, building on the DCC-GARCH model of Engle et

al. (2019), which allows for the modelling of time-varying volatilities and correlations in

large dimensions, we add restrictions on portfolio weights to reflect economically motivated

criteria such as between- and within-sector diversification. We also consider penalty terms

promoting sparsity in the resulting asset allocation and controlling for transaction costs by

stabilizing variations in portfolio weights over time. Our proposed framework is modular as

it allows to combine different penalty terms to obtain allocations satisfying multiple criteria

simultaneously, e.g. combining between-/within-sector diversification with a cost penalty to

obtain diversified portfolios with weights that are more stable over time. In addition, our

framework can flexibly accommodate any dynamic input model to generate the portfolio

weights, and is easy to implement as the penalty parameter controls the degree to which the

resulting allocation will promote the imposition of the economically motivated criteria.

Our contribution is twofold: First, we introduce an algorithm for optimally choosing

the penalization parameters in a data-driven way based on cross-validation in a dynamic

context. The algorithm uses a partition of the training period into blocks, for which the

combination of DCC-GARCH and regularization delivers portfolio variances that can be

minimized with respect to the regularization parameters. These parameters are then used to

construct portfolio weights in the out-of-sample evaluation period. The proposed algorithm

generalizes classical cross-validation procedures, as e.g. in DeMiguel et al. (2009a), to take

the time series structure of the data into account.

Our second contribution is a large scale empirical study to investigate how a regular-
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ization with respect to the sector structure helps to improve out-of-sample performance of

portfolio return variances. We select stocks of the S&P Total index up to dimension 500,

with daily frequency for the returns and a monthly frequency for portfolio re-balancing. We

obtain several important findings. First, diversification is clearly more important within

sectors than between sectors. Second, promoting sparsity of portfolio weights strongly con-

tributes to reducing portfolio variances. This control for sparsity reduces negative weights

and effectively moves the optimal portfolio towards a no short-sale constrained portfolio. The

best performing model in large cross-sections combines within-sector diversification with a

control for sparsity. The optimal portfolios significantly outperform benchmark portfolios

such as the equally weighted or the DCC-GARCH portfolio without sector-wise regulariza-

tion. Third, when a no-short-sale restriction is added, we observe that the best performing

portfolios all feature the within-sector regularization. However, the difference with respect

to the DCC-GARCH benchmark is smaller and not statistically significant for larger port-

folios. Thus, in all considered scenarios, the penalty term for within-sector variability turns

out to be important. This is in line with the results of Chen et al. (2020), extends them to

a dynamic framework, and can be explained and motivated by the economic similarities of

companies belonging to the same industry.

The remainder of this paper is organized as follows. The next section presents the model

and the algorithm to estimate portfolio weights. Section 3 applies our methodology to stock

returns of the S&P Total index, and Section 4 concludes. Some complementary results related

to the empirical study are collected in an appendix.

2. The portfolio selection methodology

In this section we develop our portfolio selection methodology. First, some useful notation

is introduced. Then, the DCC-GARCH model used for modelling volatilities and correlations

is presented, including the way how monthly forecasts are generated from averaging daily

forecasts. We then expose competing weight regularizations for the construction of global

minimum variance portfolios, and finally present an algorithm for efficiently calibrating the

penalization parameters using dynamic cross-validation.
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2.1. Notation

We adopt the following notation throughout the paper. The subscript i ∈ {1, . . . , N}

indexes the assets in the portfolio, where N denotes the total number of assets available;

the subscript k ∈ {1, . . . , K} indexes the Global Industry Classification Standard (GICS)

sectors, where K is the total number of sectors; and the subscript t ∈ {1, . . . , T} is the time

index, where T is the sample size. Furthermore, we use the following notation:

• yi,t : return for asset i at date t, stacked into yt :=
(
y1,t, . . . , yN,t

)′
.

• Ft−1 : information set generated by {yt−1, yt−2, . . .}.

• σ2
i,t := Var

(
yi,t|Ft−1

)
: conditional variance of the i-th asset at date t.

• εi,t := yi,t/σi,t : devolatized series at date t, stacked into εt :=
(
ε1,t, . . . , εN,t

)′
.

• Dt : N -dimensional diagonal matrix with the i-th diagonal element being σi,t.

• Rt := Corr
(
yt|.Ft−1

)
= Cov

(
εt|Ft−1

)
: conditional correlation matrix at date t.

• Ht := Cov
(
yt|Ft−1

)
: conditional covariance matrix at date t and Diag (Ht) = D2

t .

• C := E (Rt) = Corr (yt) = Cov (εt) : unconditional correlation matrix.

2.2. Dynamic conditional covariance matrix estimation

In our empirical application, we use daily return data to forecast covariance matrices but

we adopt the common practice of monthly re-balancing for the portfolio construction. This

creates a mismatch between the frequency used for estimation and for forecasting, which we

address with the average-forecasting approach used in De Nard et al. (2021) for DCC-GARCH

model forecasting. Based on daily covariance estimates, daily forecasts are generated, and

then they are iterated to deliver predictions for the horizon of interest. Specifically, at any

portfolio construction date h, we retrieve the forecasts of the covariance matrices for all days

in the upcoming month, namely t = h, h + 1, · · · , h + L − 1, then average those L daily

forecasts and use this averaged forecast to construct the portfolio composition at date h.

For the dynamics of the univariate volatilities, we choose a GARCH(1,1) process:

σ2
i,t = ωi + δ1,iy

2
i,t−1 + δ2,iσ

2
i,t−1, (1)
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where
(
ωi, δ1,i, δ2,i

)
are the parameters for asset i. For the evolution of the conditional

correlation matrix over time, we assume that it is governed by a DCC(1,1) model:

Qt = (1− α− β)C + αεt−1ε
′
t−1 + βQt−1, (2)

where (α, β) are the DCC model parameters, and C is the unconditional correlation matrix of

εt which can be estimated in high dimensions using shrinkage techniques, see our discussion

below. The matrix Qt here can be interpreted as a conditional pseudo-correlation matrix

or a conditional covariance matrix of devolatized residuals. For the reason that its diagonal

elements, although close to one, are not exactly equal to one, we obtain the conditional

correlation matrix and the conditional covariance matrix as

Rt := Diag (Qt)
−1/2Qt Diag (Qt)

−1/2 , (3)

Ht := DtRtDt, (4)

and for estimation by quasi maximum likelihood, we assume a conditional normal distribu-

tion, i.e. yt|Ft−1 ∼ N (0, Ht).

We use approximate correlation targeting by first estimating C using shrinkage of the

sample correlation matrix of εt, and then maximize the likelihood with respect to α and β.

Due to the inconsistency argument of Aielli (2013) this is not an exact correlation targeting,

which would require a modification of the DCC model. However, results are typically very

similar, so for simplicity we stick to the original version of the DCC model.

With respect to the shrinkage method for C, we adopt the nonlinear shrinkage estima-

tor of Ledoit and Wolf (2017) and Ledoit and Wolf (2020). This estimator is particularly

appropriate to handle the problem of ill-conditioned sample correlation matrices arising in

high dimensions, see also Zhao et al. (2020). Furthermore, the composite likelihood method

developed by Pakel et al. (2020) provides a way to overcome the computational hurdle as-

sociated with the estimation of the DCC model in high dimensions. Engle et al. (2019)

provide empirical evidence that a DCC model combining nonlinear shrinkage technique with

an estimation carried out via composite likelihood method - called DCC-NL - has superior

out-of-sample performance, compared to a DCC model with linear shrinkage, in a Markowitz

portfolio setting with a large number of assets (N ≥ 100). Note that the DCC-NL model,
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by regularizing the sample covariance matrix, also implicitly stabilizes portfolio weights. We

will investigate in the empirical section whether additional explicit sector-wise penalties are

further stabilizing the weights and improving the performance of the DCC-NL Markowitz

portfolio.

To determine the average of the L forecasts of the conditional covariance matrix Hh+l =

Dh+lRh+lDh+l, for l = 0, 1, . . . , L−1, we propose a three-step approach where Dh+l and Rh+l

are predicted separately, as described in the following.

For the multi-step ahead forecast of conditional univariate volatilities, we follow the ap-

proach of Baillie and Bollerslev (1992). The forecasts that minimize the mean square predic-

tion error, for given parameters, are determined by the conditional expectations of conditional

variances. Let us denote the l-step ahead forecast by σ̂2
i,h(l) := E

[
σ2
i,h+l|Fh−1

]
, which for the

GARCH(1,1) case can be written as

σ̂2
i,h(l) =

l−1∑
j=0

ωi
(
δ1,i + δ2,i

)j
+
(
δ1,i + δ2,i

)l
σ2
i,h. (5)

The forecasts of the diagonal matrixDh+l can be constructed as D̂h(l) = Diag
(
σ̂1,h, . . . , σ̂N,h

)
.

Due to the nonlinearity of the DCC model, there is no exact analytical expression for the

conditional expectations E
[
Rh+l|Fh−1

]
. However, Monte Carlo simulation evidence of Engle

and Sheppard (2001) suggests that the approximation E
[
Rh+l|Fh−1

]
≈ R̂h(l) has a negligible

bias, where

R̂h(l) =
l−1∑
j=0

(1− α− β) Ĉ (α + β)j + (α + β)lRh, (6)

where Ĉ is a nonlinear shrinkage estimator of the unconditional correlation matrix of εt

proposed by Ledoit and Wolf (2020).

By using the forecasts D̂h(l) and R̂h(l), the forecasts of the conditional covariance ma-

trix using DCC-GARCH can be finally computed as Ĥh(l) := D̂h(l)R̂h(l)D̂h(l), for l =

0, 1, . . . , L − 1. Thus, to obtain the estimated conditional covariance matrix on portfolio

construction day h, we average over the L forecasts:

Ĥh :=
1

L

L−1∑
l=0

Ĥh(l). (7)

This matrix Ĥh will then be used for portfolio selection.
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2.3. Global minimum-variance portfolio

We follow a large part of the empirical literature and consider the problem of estimating

the global minimum variance (GMV) portfolio. Several reasons motivate our choice. First, it

is more difficult to estimate means accurately than the covariance matrix of asset returns and

the errors in estimating means have a larger impact on portfolio weights than the errors in

the estimates of covariance matrices. Furthermore, as demonstrated by extensive empirical

evidence, e.g. Jagannathan and Ma (2003), GMV portfolios have shown very good out-of-

sample performance even in terms of criteria that take the mean into account, such as the

Sharpe ratio.

The standard GMV problem for a given covariance matrix Ht is formulated as

min
w

w′Htw

s.t. w′1 = 1, (8)

where 1 denotes a vector of ones with dimension N × 1. It has the analytical solution

wt =
H−1t 1

1′H−1t 1
. (9)

The natural strategy in practice is to replace the unknown Ht in Equation (9) by an

estimator Ĥt, yielding a feasible portfolio allocation strategy

ŵt =
Ĥ−1t 1

1′Ĥ−1t 1
. (10)

In order to take a sector structure into account, we modify the optimization problem

above to the following

min
w∈RN

w′Htw + Pλt(w)

s.t. w′1 = 1, (11)

where Pλt(w) is a penalty function, to be specified in the following. The penalty function

is parameterized by a parameter λ ≥ 0, possibly a vector, that determines the strength of

the imposed penalty. It will also depend on time, so that t is added as a subscript of the

penalty function. The optimization problem reduces to the standard GMV problem if λ = 0,
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with analytical solution given in Equation (9). For λ > 0, Equation (11) does not have an

analytical solution in general, but can typically be written as a convex programming problem

for which efficient numerical algorithms are available. In our numerical implementations, we

use the R package CVXR for disciplined convex programming, see Fu et al. (2020).

We denote the K industry sectors by G1, G2, . . . , GK , and by pk the number of stocks in

the k-th sector Gk, with average weight mkt =
∑

i∈Gk
wit/pk. In this paper, we conduct a

comparison of the following candidates for the penalty function P (w).

1. WITHIN (W): penalize weight differences of assets within the same sector

Pλt(w) = λ
K∑
k=1

∑
i∈Gk

|wit −mkt|. (12)

2. BETWEEN (B): penalize weight differences of assets between sectors

Pλt(w) = λ
K∑
k=1

|mkt −
1

N
|. (13)

3. GROUP LASSO (Gl):

Pλt(w) = λ
K∑
k=1

|mkt|. (14)

4. SPARSE (S):

Pλt(w) = λ
N∑
i=1

|wit|. (15)

5. COST (C):

Pλh(w) = λ
N∑
i=1

|wih − w+
i,h−1|, h ≥ 2, (16)

where w+
i,h := wi,hyi,h/(1 + w′hyh) with yi,h being the return of asset i between two

consecutive re-balancing dates h− 1 and h.

The first two penalty functions encourage weight similarities of assets belonging to the

same sector (“within”), and across different sectors (“between”), respectively. If one believes

that the dynamic properties of stock returns are more homogeneous within a sector than

between different sectors, then it would intuitively make sense to obtain better GMV port-

folio results with the penalty Equation (12) than with the penalty Equation (13). This is
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however an empirical question that we are going to address in the next section. Note that

an alternative specification of the within and between penalties could use an L2 norm rather

than L1, or a combination of both as in the elastic net of Zou and Hastie (2005).

The third penalty function displayed in Equation (14) promotes sparsity of portfolio

weights between sectors via a lasso-type penalty as introduced by Yuan and Lin (2006). The

fourth penalty function in Equation (15) promotes global sparsity of portfolio weights via

a lasso-type penalty as introduced by Tibshirani (1996) in a regression context. It is well

known that as the strength of this penalty increases, the solution converges to the short-sale

constrained portfolio, see DeMiguel et al. (2009a). This term thus controls the overall degree

of allowed short sales.

Finally, the penalty function in Equation (16) promotes a reduction of variability of

portfolio weights from one period to the next, and hence intends to reduce transaction costs,

similar to Chen et al. (2020) and Hautsch and Voigt (2019). The vector w+
h−1 is the allocation

of portfolio weights right before re-balancing at time h − 1. As the strength of this penalty

increases, the optimal portfolio allocation, i.e. the number of shares per asset, would be

decided at the beginning of the evaluation period. The portfolio weights would vary during

the evaluation period only because of changing asset prices. We note that the transaction

costs are not explicitly taken into account in the portfolio construction and performance

evaluation, we instead control for the weight variation over time and use it as an indicator

on the relative performance in terms of transaction costs for different portfolios.

We can combine the above penalties in various forms. For example, if we want to penalize

both the weights differences between and within sectors, we construct

Pλt(w) = λ1

K∑
k=1

|mkt −
1

N
|+ λ2

K∑
k=1

∑
i∈Gk

|wit −mkt|. (17)

where now the penalty parameter is a vector of two components, λ = (λ1, λ2)
′. We will call

this penalty “BW” for between- and within-sector regularization. The BW portfolio shrinks

the asset allocation towards the equally weighted portfolio, which has often been chosen as

a benchmark for investment strategies and was shown in DeMiguel et al. (2009b) to perform

well out of sample. Analogously, we call SW and CW penalties that combine the within term

with sparsity and transaction cost control, respectively. Furthermore, combining the sparse
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and group lasso penalties, we obtain the sparse group lasso regularization of Friedman et al.

(2010). See also Babii et al. (2020) and Babii et al. (2021) who provide theoretical results

for the sparse group lasso in a time series framework.

We first investigate individually how the above regularization terms perform compared to

the DCC-GARCH estimation without penalty. We will then study whether all three sector-

wise penalization terms are equally important and whether combining sector-wise penalties

with global controls for sparsity and cost efficiency further improves the performance.

2.4. The dynamic portfolio selection algorithm

The previous section presented the objective function for portfolio optimization including

various penalty terms depending on the sector structure. The problem is how to choose

the parameters λ that determine the strength of the corresponding penalties in a dynamic

framework. In the following we propose an algorithm that allows to combine estimation of the

dynamic conditional covariance matrix with a cross-validation method to select the penalty

parameter. We call θ the vector of all unknown parameters contained in the DCC-GARCH

model.

1. Divide the data into a training set T = [1, T ′] and a evaluation set, E = (T ′, T ].

2. Divide T into an initialization period I and J blocks Bj: T = I
⋃J
j=1Bj. The length

of each block is m.

3. Estimate a DCC-GARCH model on I to get θ̂1 and the conditional covariance matrix

forecasts of Ht(θ̂1), on I
⋃
B1 to get θ̂2 and Ht(θ̂2), etc. until I

⋃J−1
j=1 Bj to get θ̂J and

Ht(θ̂J).

Training Period Testing Period

θ̂1

θ̂2

θ̂J

I B1 B2
. . . BJ T

′ E T

4. Fix a λ > 0 and calculate the optimal portfolio allocation for each re-balancing date t

in B1 as

wt(λ) = arg min
w

(w′Ht(θ̂1)w + Pλt(w)), t ∈ B1, (18)
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with Pλ(w) defined for different cases from Equation (12) to Equation (17), and the

portfolio variance over B1 is

Q1(λ) =
1

m

∑
t∈B1

(wt(λ)′yt)
2. (19)

5. Repeat step 5 for j = 2, . . . , J to getQ2(λ), . . . , QJ(λ), and calculateQ(λ) = 1
J

∑J
j=1Qj(λ).

6. Repeat steps 5 and 6 for different values of λ on a grid, and calculate

λ∗ = arg min
λ
Q(λ). (20)

7. Estimate a DCC-GARCH model on the training set to get θ̂ and the conditional co-

variance matrix forecasts of Ht(θ̂).

8. For t ∈ E , using the optimal penalty parameter λ∗ of step 6 and the forecasts Ht(θ̂) of

step 7, calculate the optimal portfolio allocation as

wt = arg min
w

(w′Ht(θ̂)w + Pλ∗t(w)), t ∈ E . (21)

9. Calculate the out-of-sample portfolio variance

V =
1

T − T ′
∑
t∈E

(w′tyt)
2. (22)

10. Compare V with benchmarks such as the classical GMV without sector regularization

(λ = 0), and one that imposes weight equality across assets (1/N).

The proposed algorithm nests a block-version of time series cross-validation (steps 4 to

6) into the portfolio selection problem. We use blocks rather than single observations as test

sets, because the forecasting targets are variances, not observations themselves. The choice of

the block-size m should balance the estimation uncertainty of out-of-sample volatilities Qj(λ)

in Equation (19) with that of their expectation, Q(λ). Note that in this form, the proposed

portfolio selection algorithm is novel. In the following empirical analysis we investigate its

performance when applied to a large asset data set.
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3. Empirical application

In our empirical analysis, we investigate the question of how adding a sector-specific reg-

ularization structure will impact portfolio performance with respect to benchmark portfolios.

We will examine the out-of-sample performance of Markowitz portfolios based on combin-

ing a dynamic conditional correlation model with intra- and inter-sector penalization using

historical stock data.

3.1. Data description

We use historical data on daily returns for the S&P Total Index component stocks with

data available since at least January 03, 2000. The selected stocks belong to 10 different

Global Industry Classification Standard (GICS) sectors which have at least 50 companies in

the S&P Total Index. Therefore, Communication Services is the only sector in the S&P Total

Index which is not covered in the investment universes considered in our analysis. The sample

period spans from January 03, 2000 to March 31, 2021, with a total of 5304 observations

per stock. For simplicity, we adopt the common convention that 21 consecutive trading days

constitute one month. In this manner, the cross-validation period for the penalization terms

ranges from January 17, 2007 to July 13, 2016, resulting in a total of 112 months. The

out-of-sample period is composed of the remaining 56 months, starting on July 14, 2016 and

ending on March 16, 2021.

To be consistent with common practice, all the portfolios are re-balanced monthly to

achieve a lower turnover and avoid an unreasonable amount of transaction costs. For sim-

plicity, we assume the portfolio weights are fixed from one day to the next within a month.

This will reduce the transaction cost but not eliminate it as the number of shares over time

does not remain constant. At any investment date, the conditional covariance matrix is esti-

mated using the 3-step approach for the DCC-GARCH model described in Section 2.2. The

availability of daily returns ensures a sufficient estimation precision of the DCC-GARCH

model at each step of the proposed algorithm. We consider the following portfolio sizes:

N ∈ {50, 100, 250, 500}, composed respectively of the first 5, 10, 25, and 50 largest market

capitalization stocks – evaluated on March 31, 2021 – from the S&P Total Index component

companies belonging to the 10 GICS sectors. In our application, each investment universe is
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nested by the larger ones, e.g. our investment universe with N = 50 is a subset of the one

with N = 100.

3.2. Dynamic covariance matrix estimation

We follow the procedure described in Section 2.2, where a univariate GARCH(1,1) model

is adopted for the conditional variances of asset returns, and a DCC(1,1) model is fitted to

obtain time-varying conditional correlation matrices using historical daily returns. To address

the challenges arising in large dimensions, we use nonlinear shrinkage for the unconditional

correlation matrix targeting and the estimation is carried out via the composite likelihood

method. In order to gain insights on the robustness of the parameter estimates over time

and on the effect of sample size, we consider five samples of increasing size. Each period

starts on 2000-01-04, and ends respectively on 2007-01-12, 2009-07-09, 2011-11-04, 2014-03-

12, and 2016-07-12. In this manner, the sample size for estimation starts from roughly 1800

observations and then increases by around 600 observations each period. These periods will

also serve as blocks for our cross-validation algorithm introduced in Section 2.4, so that after

the initialization period (Period 1) with 1764 observations, there are J = 4 blocks, each

consisting of m = 588 observations.

Figure 1 summarizes the GARCH estimates via box-plots for the different sub-periods and

dimensions. It can be observed that the estimates for all parameters (ω, α, β) are quite stable

over time, especially after Period 2 where the effect of adding more data becomes marginal.

Although there are some outliers, the estimates of ω and α are close to zero for most of the

assets, while the estimates for the persistence coefficient β are close to one, which are typical

findings for financial asset return data. Parameter estimates for the DCC model are reported

in Table 1, where again estimates of α are close to zero and estimates of β are close to 1,

indicating high persistence in the dynamic correlations. Furthermore, similar to the volatility

models, parameter estimates stabilize as the sample size increases. In addition, all parameter

estimates are significantly different from zero using estimated asymptotic standard errors.

After estimation, we have used various diagnostics such as Portmanteau tests for auto-

correlation in standardized residuals, as well as their squares and cross-products, which do

not yield any evidence against the chosen model specifications. To save space, we do not
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Figure 1: Boxplots of GARCH(1,1) parameter estimates for the five periods of augmenting sample sizes

(P1 to P5), and for four investment universes N ∈ {50, 100, 250, 500}. The sub-periods considered in the

estimation are: P1 from 2000-01-04 to 2007-01-12; P2 from 2000-01-04 to 2009-07-09; P3 from 2000-01-04 to

2011-11-04; P4 from 2000-01-04 to 2014-03-12; P5 from 2000-01-04 to 2016-07-12.
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Table 1: DCC parameter estimates for the five periods of augmenting sample sizes (Period 1 to Period 5),

and for three investment universes N ∈ {50, 100, 250, 500}.

N = 50 N = 100 N = 250 N = 500

α β α β α β α β

Period 1 0.0126 0.9797 0.0116 0.9815 0.0109 0.9825 0.0095 0.9856

(0.0001) (0.0002) (0.0002) (0.0003) (0.0001) (0.0003) (0.0004) (0.0015)

Period 2 0.0145 0.9782 0.0137 0.9803 0.013 0.9821 0.0116 0.9844

(0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001)

Period 3 0.0196 0.9711 0.0192 0.9725 0.0178 0.9754 0.0156 0.9794

(0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001)

Period 4 0.018 0.9737 0.0171 0.9762 0.0167 0.9773 0.0149 0.9803

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Period 5 0.0183 0.9735 0.0168 0.9766 0.0167 0.9773 0.0146 0.9807

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Note: The numbers in parentheses are asymptotic standard errors of the corresponding parameter estimates.

The sub-periods considered in the estimation are: Period 1 from 2000-01-04 to 2007-01-12; Period 2 from 2000-

01-04 to 2009-07-09; Period 3 from 2000-01-04 to 2011-11-04; Period 4 from 2000-01-04 to 2014-03-12; Period 5

from 2000-01-04 to 2016-07-12.

report these diagnostics here, but keep them available upon request. We therefore continue

with the construction of GMV portfolios under alternative types of regularization.

3.3. GMV portfolio performance without short-sale constraints

We study the performance of investment strategies including sector-specific regularization

with respect to benchmark portfolios in the context of the GMV portfolio where the most

important performance measure is the out-of-sample volatility. Since the GMV portfolio is

designed to minimize the variance rather than to maximize the Sharpe Ratio, all portfolios

are primarily evaluated by the magnitude of the volatility reduction. We also report the

Sharpe ratio to demonstrate that GMV portfolios typically perform well even in terms of

criteria that include average out-of-sample returns (see e.g. Jagannathan and Ma (2003)).
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We include the following eleven portfolios in our empirical analysis.

1. EQ: the equally-weighted portfolio with weights given by 1/N , which is a standard

benchmark advocated by DeMiguel et al. (2009b).

2. NP (no penalty): the DCC-GARCH with nonlinear shrinkage and maximum composite

likelihood.

3. W: as NP but with additional penalty for within-sector variation.

4. B: as NP but with additional penalty for between-sector variation.

5. S: as NP but with additional L1-norm penalty to promote sparsity.

6. Gl: as NP but with additional L1-norm penalty to promote sparsity in the selected

sectors.

7. C: as NP but with additional penalty to control transaction costs.

8. BW: as W but with additional penalty for between-sector variation.

9. SW: as W but with additional L1-norm penalty to promote sparsity.

10. SGl: as Gl but with additional L1-norm penalty to promote sparsity within the selected

sectors.

11. CW: as W but with additional penalty to control transaction costs.

In order to obtain the optimal value of the penalization parameter(s) λ, we solve the

optimization program specified in Equation (20) via grid search. The resulting optimal values

of log(λ) are reported in Table 6 of the appendix. We then construct the asset allocation

for the eleven portfolios considered on each monthly re-balancing date, and the portfolio

weights are assumed to remain constant within the month. The out-of-sample portfolio

performance measurements are computed with daily return data and then annualized by

following the convention of multiplying the average return by 252 and the standard deviation

by
√

252. The (annualized) Sharpe ratio is obtained as the ratio of average return and

standard deviation. The statistics, with volatility in percentage points, are presented in
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Table 2: Out-of-sample annualized portfolio standard deviation (in percentage points) and Sharpe ratio

W B S Gl C BW SW SGl CW NP 1/N

N=50

SD 17.410∗∗ 18.013 16.936∗∗∗ 18.049 16.909∗∗∗ 16.662∗∗∗ 16.933∗∗∗ 16.449∗∗∗ 16.884∗∗∗ 18.191 19.868

SR 0.819 0.908 0.955 0.984 0.954 1.031 0.898 0.973 0.899 0.860 0.729

N=100

SD 17.231∗∗∗ 18.854 16.800∗∗∗ 18.871 16.833∗∗∗ 17.073∗∗∗ 16.886∗∗∗ 16.806∗∗∗ 16.860∗∗∗ 18.755 20.269

SR 0.703 0.917 1.044 0.884 1.035 0.722 0.795 1.048 0.784 0.872 0.648

N=250

SD 18.650∗∗∗ 19.579 17.568∗∗ 19.634 17.573∗∗ 19.060 17.592∗∗ 17.572∗∗ 17.581∗∗ 19.269 20.539

SR 0.644 0.644 0.919 0.680 0.919 0.599 0.898 0.920 0.894 0.675 0.573

N=500

SD 18.825∗∗ 19.657 17.636∗∗∗ 19.604 17.632∗∗∗ 19.464 17.577∗∗∗ 17.635∗∗∗ 17.588∗∗∗ 19.464 21.511

SR 0.777 0.682 0.942 0.682 0.914 0.723 0.900 0.942 0.865 0.699 0.518

Note: Significant outperformance of the portfolios over the NP portfolio in terms of SD is denoted by asterisks: ∗, ∗∗, and ∗ ∗ ∗ indicate

significance at the 10%, 5%, and 1% level respectively. All portfolios outperform the equally-weighted benchmark at a significance level of 5%

or lower.

Table 2. The best performing portfolio with respect to the volatility criterion is marked in

bold.

Focusing first on the three portfolios with sector-wise regularizations, namely the W, B,

and Gl portfolios, we conclude that the W portfolio has the highest contribution to reducing

portfolio volatility. While the combination of within- and between-sector (BW) regulariza-

tion is further improving the performance of the W portfolio in terms of volatility for the

moderate investment universes (N ∈ {50, 100}), adding additional between-sector penaliza-

tion is deteriorating the volatility performance of the W portfolio in larger dimensions (i.e.

N ∈ {250, 500}). Additionally, the observation that shrinking different sector weights to-

wards equivalence lacks in efficacy is consistent with the intuition that assets belonging to

different sectors may have quite different characteristics and tend to be less correlated. Pro-

moting within-sector diversification is more important than between-sector diversification or

concentrating the allocation on a few sectors. Furthermore, promoting sparsity concentrates

19



the weight allocation on fewer assets, and adding a cost penalization term stabilizes the

weight evolution of each asset over time. We can observe from Table 2 that both approaches

contribute to better portfolio performance in terms of volatility.

In addition, for each of the portfolios with regularizations, we conduct the test of equality

in standard deviations with respect to the two benchmark portfolios, with a two-sided p-value

obtained by the prewhitened HACPW method described in Ledoit and Wolf (2011). It can be

concluded that the nine regularized portfolios outperform the equally-weighted benchmark

and the outperformance is statistically significant at all conventional levels. Furthermore,

controlling for “within” ,“sparse” and “cost” significantly improves the portfolio volatility

(at the 5% level) when considering the NP portfolio as benchmark. We also test whether the

regularized portfolios are significantly outperforming each other. The p-values are reported

in Table 8 and Table 9 of the appendix. We observe that the “within” portfolio is not signif-

icantly outperformed by other penalized portfolios at the 5% level for N ∈ {100, 250} and at

the 1% level for N = 500. However, the “between” and “group sparse” portfolios are almost

always significantly outperformed for N ∈ {100, 250, 500} at the 1% level. This confirms that

promoting within-sector diversification is more beneficial than between-sector diversification

or concentrating the allocation on a few sectors. In addition, portfolios controlling for spar-

sity and transaction cost are rarely significantly outperformed, especially in moderate and

large investment universes.

In terms of the Sharpe ratio, we conclude that adding a sparsity regularization and a cost

penalty term contributes to an improved portfolio performance. Additionally, the “between”

regularized portfolio (B) and the portfolio focusing on a few selected sectors (Gl) display an

improvement in performance relative to both benchmarks in the small investment universes

(N ∈ {50, 100}). The outperformance in terms of Sharpe ratio tends to diminish for portfolios

with a larger number of assets (N ∈ {250, 500}). We note that if we changed our performance

target from GMV portfolio to Sharpe ratio maximization, including additional features such

as a momentum signal for expected returns could further improve the performance, see e.g.

De Nard et al. (2021).

We also provide some descriptive statistics for the portfolio weights wt over time. In each

holding period, namely one month, we compute the following four characteristics:
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• Min: Minimum weight of all assets in the portfolio.

• Max: Maximum weight of all assets in the portfolio.

• SD: Standard deviation of weights of all assets in the portfolio.

• MAD-EW: Mean absolute deviation from equal weights, 1/N .

• MDiv-Sec-W: Mean diversification within sectors, computed as

MDiv-Sec-W =
1

T − T ′
T−T ′∑
t=1

K∑
k=1

∑
i∈Gk

|wit −mkt|.

• MDiv-Sec-B: Mean diversification between sectors, computed as

MDiv-Sec-B =
1

T − T ′
T−T ′∑
t=1

K∑
k=1

|mkt −
1

N
|.

• No. Active: Number of stocks with absolute weight larger than 1% ∗ 1/N .

For each characteristic, we then report the average statistics over the out-of-sample period,

as summarized in Table 3. We observe that the portfolios with the least dispersed weights

are those including within-sector regularization, either alone or in combination with one of

the other regularization terms. For each dimension, portfolios with “within”, “sparse” and

“cost” penalizations contribute the most to reducing the distance to the equally weighted

portfolio as measured by the MAD-EW criterion. Additionally, we observe that portfolios

with significantly improved volatilities (i.e. W, S, C) have overall smaller values for the

MDiv-Sec-W statistic indicating higher within-sector diversification, but larger values for the

MDiv-Sec-B statistic suggesting lower between-sector diversification. Conversely, portfolios

with poor out-of-sample performance (i.e. B, Gl) exhibit higher between-sector diversification

and lower within-sector diversification. This observation is consistent with the conclusion that

promoting within-sector diversification is more important than between-sector diversification

or concentrating the allocation on only a few sectors. Furthermore, the number of active

positions indicates that the portfolios with sector-wise regularizations (i.e. W, B, Gl) are

diversified across all available assets while portfolios controlling for sparsity and cost are

concentrating their weights on 40% of the investment universe for the moderate portfolio

21



sizes (N ∈ {50, 100}) and on 20% of the investment universe for larger portfolio sizes (N ∈

{250, 500}).
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Figure 2: Out-of-sample period weight evolution

We also present the weight evolution during the out-of-sample period as weight variations
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provide us with further indications on the relative performance of the different portfolios in

terms of transaction costs. Figure 2 illustrates the weight variation over time for component

stocks in the case where the investment universe is composed of 50 assets. The asset with

the highest sector-wise market capitalization is chosen as a representative of each sector,

and in such a way we obtain ten stocks representing the ten sectors in the portfolio. From

Figure 2, it can be concluded that the DCC-GARCH portfolio (NP) is subject to large changes

from one re-balancing date to another, which further deteriorates the portfolio return when

transaction costs are taken into account. The black curve indicates that adding the within-

sector penalization structure is stabilizing the weights across time, resulting in a further

improved relative portfolio performance – compared to the benchmark NP portfolio – when

accounting for transaction costs. Additionally, it can be observed from the blue curve that

including another regularization term based on transaction costs is further stabilizing the

weight evolution over time.
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Table 3: Statistics of portfolio weights

W B S Gl C BW SW SGl CW NP 1/N

N=50

Min -0.070 -0.084 0.000 -0.078 -0.001 -0.073 0.000 0.002 -0.001 -0.074 0.020

Max 0.212 0.212 0.332 0.232 0.329 0.191 0.318 0.277 0.310 0.235 0.020

SD 0.049 0.065 0.057 0.066 0.057 0.046 0.053 0.042 0.052 0.066 0.000

MAD-EW 0.034 0.050 0.032 0.050 0.032 0.031 0.028 0.020 0.027 0.050 0.000

MDiv-Sec-W 1.060 2.475 1.352 2.407 1.356 1.237 1.085 0.937 1.075 2.317 0.000

MDiv-Sec-B 0.265 0.124 0.193 0.158 0.193 0.203 0.200 0.122 0.201 0.191 0.000

No. Active 50 50 20 50 27 50 27 50 32 50 50

N=100

Min -0.046 -0.062 0.000 -0.062 -0.001 -0.045 0.000 0.000 -0.001 -0.061 0.010

Max 0.200 0.163 0.306 0.170 0.305 0.188 0.333 0.307 0.329 0.174 0.010

SD 0.033 0.041 0.038 0.041 0.039 0.033 0.039 0.038 0.039 0.041 0.000

MAD-EW 0.020 0.030 0.017 0.030 0.017 0.020 0.016 0.017 0.016 0.030 0.000

MDiv-Sec-W 1.752 2.943 1.566 2.915 1.610 1.808 1.347 1.584 1.356 2.887 0.000

MDiv-Sec-B 0.124 0.063 0.087 0.072 0.087 0.113 0.103 0.087 0.104 0.082 0.000

No. Active 100 100 40 100 25 99 55 29 46 100 100

N=250

Min -0.030 -0.028 0.000 -0.028 -0.001 -0.029 0.000 0.000 -0.001 -0.028 0.004

Max 0.126 0.127 0.305 0.132 0.302 0.103 0.291 0.305 0.290 0.140 0.004

SD 0.018 0.019 0.024 0.019 0.024 0.017 0.024 0.024 0.024 0.019 0.000

MAD-EW 0.011 0.013 0.007 0.013 0.007 0.012 0.007 0.007 0.007 0.013 0.000

MDiv-Sec-W 2.831 3.229 1.779 3.230 1.808 2.914 1.779 1.779 1.795 3.208 0.000

MDiv-Sec-B 0.023 0.015 0.038 0.015 0.038 0.013 0.038 0.038 0.038 0.019 0.000

No. Active 249 249 57 249 60 249 57 70 59 249 250

N=500

Min -0.014 -0.016 0.000 -0.016 -0.000 -0.014 0.000 0.000 -0.000 -0.016 0.002

Max 0.067 0.072 0.238 0.072 0.235 0.058 0.232 0.238 0.229 0.078 0.002

SD 0.009 0.009 0.015 0.009 0.015 0.009 0.015 0.015 0.015 0.010 0.000

MAD-EW 0.006 0.006 0.004 0.006 0.004 0.006 0.004 0.004 0.004 0.006 0.000

MDiv-Sec-W 2.866 3.137 1.845 3.157 1.870 2.936 1.847 1.851 1.862 3.129 0.000

MDiv-Sec-B 0.009 0.007 0.017 0.007 0.017 0.006 0.017 0.017 0.017 0.009 0.000

No. Active 499 499 111 498 111 498 73 99 104 498 500
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3.4. GMV portfolio performance with short-sale constraints

Given that some markets and fund managers are explicitly subject to short-sale restric-

tions in their activities, we also consider the added benefits of our approach when a non-

negativity constraint is applied to all portfolio weights. We report the values of the optimal

penalization parameters λ for all cases in Table 7 of the appendix.

Comparing the GMV portfolio results in Table 2 with the no-short-sale portfolio results

in Table 4, we observe that the optimal no-short-sale portfolios have smaller out-of-sample

volatility than the GMV portfolios for all considered investment universes. This finding sug-

gests that the imposed no-short-sale constraint helps decreasing the actual portfolio risk,

but further improvements can still be obtained. In addition, our previous conclusion that

including within-sector regularization is strongly beneficial still holds, especially in small

and moderate investment universes. Whereas adding between-sector shrinkage effectively

improves performance for small to moderate dimensions, it tends to deteriorate overall port-

folio performance in large dimensions (N = 500), although the differences are small.

Furthermore, although within-sector penalization reduces portfolio volatility, this im-

provement in performance is only statistically significant in the case of N = 50. The

outperformance in terms of volatility is not statistically significant for larger portfolios

(N ∈ {100, 250, 500}).

Finally, we take a closer look at the portfolio construction by reporting the weights statis-

tics in Table 5. Clearly, there is now a stronger effect of the penalization term, which is shrink-

ing the weights towards equality, especially in larger portfolios. Moreover, the W portfolio

has higher within-sector diversification while the between-sector diversification increases for

larger portfolios (N ∈ {250, 500}) and decreases for moderate portfolio sizes (N ∈ {50, 100}).

Additionally, the number of active positions decreases significantly compared to the corre-

sponding portfolios without short-sale constraint, and this effect gets stronger for larger

investment universes.
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Table 4: Out-of-sample annualized portfolio standard deviation (in percentage points) and Sharpe ratio (with

short-sale constraint)

W B C BW CW NP 1/N

N=50

SD 16.370∗∗ 16.401∗∗ 16.910∗∗ 16.472∗∗ 16.356∗∗ 16.931 19.868

SR 0.866 1.109 0.959 1.014 0.873 0.953 0.729

N=100

SD 16.589 16.681∗ 16.793 16.669 16.602 16.798 20.269

SR 0.781 1.093 1.050 0.809 0.781 1.046 0.648

N=250

SD 16.381 17.565 17.582 16.378 16.403 17.554 20.539

SR 0.598 0.915 0.905 0.596 0.601 0.914 0.573

N=500

SD 17.515 17.648 17.610∗ 17.605 17.501 17.625 21.511

SR 0.828 0.949 0.940 0.838 0.811 0.946 0.518

Note: Significant outperformance of the portfolios over the NP portfolio in terms of

SD is denoted by asterisks: ∗, ∗∗, and ∗ ∗ ∗ indicate significance at the 10%, 5%, and

1% level respectively. The outperformances of all portfolios against the equally-weighted

benchmark are significant at a level of 5% or lower.
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Table 5: Statistics of portfolio weights (with short-sale constraint)

W B C BW CW NP 1/N

N=50

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.020

Max 0.206 0.299 0.330 0.206 0.207 0.331 0.020

SD 0.040 0.054 0.057 0.038 0.040 0.057 0.000

MAD-EW 0.025 0.030 0.031 0.024 0.025 0.031 0.000

MDiv-Sec-W 0.496 1.343 1.340 0.586 0.494 1.345 0.000

MDiv-Sec-B 0.214 0.184 0.192 0.204 0.213 0.193 0.000

No. Active 33 28 25 39 36 23 50

N=100

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.010

Max 0.290 0.285 0.306 0.278 0.285 0.306 0.010

SD 0.035 0.037 0.038 0.034 0.034 0.038 0.000

MAD-EW 0.015 0.017 0.017 0.014 0.014 0.017 0.000

MDiv-Sec-W 1.136 1.572 1.569 1.162 1.110 1.565 0.000

MDiv-Sec-B 0.106 0.086 0.087 0.104 0.106 0.087 0.000

No. Active 68 51 43 75 72 51 100

N=250

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.004

Max 0.050 0.303 0.304 0.049 0.053 0.304 0.004

SD 0.009 0.024 0.024 0.009 0.010 0.024 0.000

MAD-EW 0.005 0.007 0.007 0.005 0.005 0.007 0.000

MDiv-Sec-W 0.799 1.762 1.759 0.767 0.872 1.762 0.000

MDiv-Sec-B 0.042 0.038 0.038 0.042 0.042 0.038 0.000

No. Active 141 111 113 147 144 117 250

N=500

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.002

Max 0.223 0.190 0.237 0.183 0.222 0.238 0.002

SD 0.015 0.013 0.015 0.013 0.015 0.015 0.000

MAD-EW 0.004 0.004 0.004 0.004 0.004 0.004 0.000

MDiv-Sec-W 1.829 1.858 1.829 1.852 1.819 1.834 0.000

MDiv-Sec-B 0.018 0.011 0.017 0.012 0.018 0.017 0.000

No. Active 125 168 188 117 153 187 500
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4. Conclusions and outlook

In a dynamic framework, considering various regularizations for portfolio weights, we

have shown that both sparsity and sector-wise regularizations are important for reducing

out-of-sample portfolio volatilities. Among the sector-wise regularizations, we observe that

controlling for within-sector weight variations has the largest contribution to reducing out-of-

sample portfolio volatility compared to promoting between-sector diversification or concen-

trating the portfolio weights on a few sectors. In a scenario without short-sale constraints,

the best-performing portfolio always includes a control for sparsity that implicitly reduces

negative weights and moves the portfolio closer to one with short sales constraints. In large

dimensions, the optimal portfolio combines the sparsity regularization with a penalty for

within-sector variation of weights. The optimal portfolios significantly outperform two bench-

mark portfolios. Adding short-sale constraints, the best-performing portfolio always includes

a “within” penalty, but the statistical significance disappears when portfolio size is larger.

Our results can be extended in various directions. First, other portfolios than the GMV

can be considered such as the tangency portfolio, or factor-risk-parity portfolios as in Las-

sance et al. (2021). Second, our methodology could be applied to international diversification,

where the structure is not only based on industry sectors but also countries. In a similar

vein as our paper, it would be interesting to investigate whether, for example, within-country

diversification is more relevant than between-country diversification. Moreover, additional

classes of assets can be considered such as bonds, foreign exchange, commodities and al-

ternative assets, for which other types of regularizations might be useful, depending on the

objectives. We leave these topics for future research.
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Appendix

Table 6: Logarithm of penalty tuning parameters, log(λ), via cross validation (without short-sale constraint)

W B S Gl C BW SW SGl CW

N=50 -15.8 -16.6 -9.3 4.9 -8.1 -16.6 -15.8 -9.4 -15.8 -9.3 4.9 -8.2 -15.8

N=100 -15.5 -18.1 -11.4 -11.5 -13.8 -18.2 -15.6 -11.6 -15.6 -11.4 -11.4 -14.0 -15.6

N=250 -17.6 -17.6 -10.9 -5.8 -10.8 -17.6 -17.5 -11.0 -17.5 -11.1 -5.7 -10.9 -17.6

N=500 -17.8 -18.4 -11.8 -4.6 -12.7 -18.5 -17.8 -11.8 -17.9 -11.8 -4.8 -2.0 -17.8

Table 7: Logarithm of penalty tuning parameters, log(λ), via cross validation (with short-sale constraint)

W B C BW CW

N=50 -15.0 -16.6 -8.3 -16.7 -15.1 -8.4 -15.0

N=100 -14.9 -18.0 -12.4 -17.9 -15.0 -12.2 -14.9

N=250 -13.6 -20.9 -11.2 -21.0 -13.6 -11.0 -13.7

N=500 -17.0 -17.3 -11.6 -17.4 -17.0 -11.4 -16.9
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Table 8: P-values for statistical test of difference in volatility (without short-sale constraint)

W B S Gl C BW SW SGl CW NP 1/N

N=50

W 0.212 0.261 0.038 0.001

B 0.842 0.314 0.010

S 0.130 0.062 0.088 0.005 0.000

Gl 0.556 0.029

C 0.100 0.049 0.462 0.076 0.788 0.003 0.000

BW 0.014 0.000 0.546 0.002 0.570 0.446 0.508 0.000 0.000

SW 0.082 0.052 0.970 0.078 0.002 0.000

SGl 0.013 0.009 0.056 0.021 0.044 0.638 0.072 0.095 0.001 0.000

CW 0.054 0.042 0.576 0.078 0.765 0.011 0.002 0.000

NP 0.016

N=100

W 0.000 0.000 0.000 0.000

B 0.806 0.002

S 0.306 0.000 0.000 0.205 0.492 0.466 0.226 0.642 0.000 0.000

Gl 0.005

C 0.334 0.000 0.000 0.539 0.658 0.834 0.000 0.000

BW 0.087 0.000 0.000 0.000 0.000

SW 0.387 0.000 0.000 0.619 0.000 0.000

SGl 0.312 0.000 0.000 0.205 0.501 0.496 0.672 0.000 0.000

CW 0.352 0.000 0.000 0.564 0.602 0.000 0.000

NP 0.333 0.059 0.004

Note: The p-values are from the tests of outperformance where the row portfolios are benchmarked against

the column portfolios, i.e. we test whether portfolio i significantly outperforms portfolio j in terms of

volatility for row i and column j of the table. An empty cell indicates portfolio i is not outperforming

portfolio j.
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Table 9: P-values for statistical test of difference in volatility (without short-sale constraint)

W B S Gl C BW SW SGl CW NP 1/N

N=250

W 0.000 0.000 0.000 0.001 0.000

B 0.390 0.017

S 0.174 0.006 0.004 0.762 0.058 0.889 0.454 0.929 0.021 0.001

Gl 0.035

C 0.181 0.007 0.004 0.061 0.922 0.956 0.023 0.001

BW 0.002 0.004 0.158 0.000

SW 0.139 0.004 0.002 0.040 0.014 0.000

SGl 0.176 0.006 0.004 0.960 0.059 0.908 0.952 0.022 0.001

CW 0.143 0.004 0.002 0.042 0.911 0.014 0.000

NP 0.000 0.004 0.001

N=500

W 0.002 0.001 0.000 0.011 0.000

B 0.000

S 0.044 0.000 0.001 0.003 0.001 0.000

Gl 0.189 0.000

C 0.043 0.000 0.799 0.000 0.003 0.825 0.001 0.000

BW 0.502 0.560 0.999 0.000

SW 0.025 0.000 0.266 0.000 0.278 0.001 0.270 0.262 0.000 0.000

SGl 0.044 0.000 0.679 0.001 0.003 0.001 0.000

CW 0.026 0.000 0.416 0.000 0.434 0.001 0.422 0.000 0.000

NP 0.000 0.000 0.000

Note: The p-values are from the tests of outperformance where the row portfolios are benchmarked against

the column portfolios, i.e. we test whether portfolio i significantly outperforms portfolio j in terms of

volatility for row i and column j of the table. An empty cell indicates portfolio i is not outperforming

portfolio j.
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Table 10 reports the total running time for the out-of-sample period of 56 months using

the optimal penalization parameter found in the cross-validation step. The running time

increases moderately with respect to portfolio size. Note that the optimal weights of the

portfolios with W, B, S, Gl penalty terms at time t are independent of the optimal weights

of other re-balancing dates and thus the computation can be implemented with parallel

programming. However, the optimal allocation at time t of the portfolios controlling for the

cost penalty is dependent on the optimal weights of the previous re-balancing date t−1, and

thus can only be computed sequentially.

Table 10: Running time for the out-of-sample period (in minutes)

W B S Gl C BW SW SGl CW

N=50 0.33 0.05 0.03 0.03 0.13 0.37 0.33 0.04 2.05

N=100 0.32 0.06 0.03 0.03 0.13 0.36 0.33 0.05 2.09

N=250 0.32 0.07 0.05 0.05 0.22 0.38 0.37 0.07 2.17

N=500 0.53 0.19 0.16 0.13 0.65 0.56 0.53 0.22 2.67

Note: Computations were carried out on a 2020 iMac with the following spec-

ifications: Intel Core i9 10-Core processor (3.6GHz) and 72 GB RAM (2133

MHz DDR4).
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